Cargando…

NMR Based Metabolomics Comparison of Different Blood Sampling Techniques in Awake and Anesthetized Rats

The composition of body fluids has become one of the most commonly used methods for diagnosing various diseases or monitoring the drug responses, especially in serum/plasma. It is therefore vital for investigators to find an appropriate way to collect blood samples from laboratory animals. This stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Hongying, Li, Shuang, Zhang, Yingfeng, Guo, Huiling, Wu, Liang, Liu, Huili, Manyande, Anne, Xu, Fuqiang, Wang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681412/
https://www.ncbi.nlm.nih.gov/pubmed/31336881
http://dx.doi.org/10.3390/molecules24142542
Descripción
Sumario:The composition of body fluids has become one of the most commonly used methods for diagnosing various diseases or monitoring the drug responses, especially in serum/plasma. It is therefore vital for investigators to find an appropriate way to collect blood samples from laboratory animals. This study compared blood samples collected from different sites using the NMR based metabolomics approach. Blood samples were collected from the saphenous vein (awake state), tail vein (awake and anesthetized states after administration of sevoflurane or pentobarbital) and the inferior thoracic vena cava (ITVC, anesthetized state). These approaches from the saphenous and tail veins have the potential to enable the collection of multiple samples, and the approach from ITVC is the best method for the collection of blood for the terminate state. The compositions of small molecules in the serum were determined using the (1)H-NMR method, and the data were analyzed with traditional correlation analysis, principle component analysis (PCA) and OPLS-DA methods. The results showed that acute anesthesia significantly influenced the composition of serum in a very short period, such as the significant increase in glucose, and decrease in lactate. This indicates that it is better to obtain blood samples under the awake state. From the perspective of animal welfare and multiple sampling, the current study shows that the saphenous vein and tail vein are the best locations to collect multiple blood samples for a reduced risk of injury in the awake state. Furthermore, it is also suitable for investigating pharmacokinetics and the effects of drug intervention on animals.