Cargando…
Quantitative blood flow measurement in rat brain with multiphase arterial spin labelling magnetic resonance imaging
Cerebral blood flow is an important parameter in many diseases and functional studies that can be accurately measured in humans using arterial spin labelling (ASL) MRI. However, although rat models are frequently used for preclinical studies of both human disease and brain function, rat CBF measurem...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681434/ https://www.ncbi.nlm.nih.gov/pubmed/29498562 http://dx.doi.org/10.1177/0271678X18756218 |
_version_ | 1783441731612573696 |
---|---|
author | Larkin, James R Simard, Manon A Khrapitchev, Alexandre A Meakin, James A Okell, Thomas W Craig, Martin Ray, Kevin J Jezzard, Peter Chappell, Michael A Sibson, Nicola R |
author_facet | Larkin, James R Simard, Manon A Khrapitchev, Alexandre A Meakin, James A Okell, Thomas W Craig, Martin Ray, Kevin J Jezzard, Peter Chappell, Michael A Sibson, Nicola R |
author_sort | Larkin, James R |
collection | PubMed |
description | Cerebral blood flow is an important parameter in many diseases and functional studies that can be accurately measured in humans using arterial spin labelling (ASL) MRI. However, although rat models are frequently used for preclinical studies of both human disease and brain function, rat CBF measurements show poor consistency between studies. This lack of reproducibility is due, partly, to the smaller size and differing head geometry of rats compared to humans, as well as the differing analysis methodologies employed and higher field strengths used for preclinical MRI. To address these issues, we have implemented, optimised and validated a multiphase pseudo-continuous ASL technique, which overcomes many of the limitations of rat CBF measurement. Three rat strains (Wistar, Sprague Dawley and Berlin Druckrey IX) were used, and CBF values validated against gold-standard autoradiography measurements. Label positioning was found to be optimal at 45°, while post-label delay was optimised to 0.55 s. Whole brain CBF measures were 109 ± 22, 111 ± 18 and 100 ± 15 mL/100 g/min by multiphase pCASL, and 108 ± 12, 116 ± 14 and 122 ± 16 mL/100 g/min by autoradiography in Wistar, SD and BDIX cohorts, respectively. Tumour model analysis shows that the developed methods also apply in disease states. Thus, optimised multiphase pCASL provides robust, reproducible and non-invasive measurement of CBF in rats. |
format | Online Article Text |
id | pubmed-6681434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-66814342019-09-16 Quantitative blood flow measurement in rat brain with multiphase arterial spin labelling magnetic resonance imaging Larkin, James R Simard, Manon A Khrapitchev, Alexandre A Meakin, James A Okell, Thomas W Craig, Martin Ray, Kevin J Jezzard, Peter Chappell, Michael A Sibson, Nicola R J Cereb Blood Flow Metab Original Articles Cerebral blood flow is an important parameter in many diseases and functional studies that can be accurately measured in humans using arterial spin labelling (ASL) MRI. However, although rat models are frequently used for preclinical studies of both human disease and brain function, rat CBF measurements show poor consistency between studies. This lack of reproducibility is due, partly, to the smaller size and differing head geometry of rats compared to humans, as well as the differing analysis methodologies employed and higher field strengths used for preclinical MRI. To address these issues, we have implemented, optimised and validated a multiphase pseudo-continuous ASL technique, which overcomes many of the limitations of rat CBF measurement. Three rat strains (Wistar, Sprague Dawley and Berlin Druckrey IX) were used, and CBF values validated against gold-standard autoradiography measurements. Label positioning was found to be optimal at 45°, while post-label delay was optimised to 0.55 s. Whole brain CBF measures were 109 ± 22, 111 ± 18 and 100 ± 15 mL/100 g/min by multiphase pCASL, and 108 ± 12, 116 ± 14 and 122 ± 16 mL/100 g/min by autoradiography in Wistar, SD and BDIX cohorts, respectively. Tumour model analysis shows that the developed methods also apply in disease states. Thus, optimised multiphase pCASL provides robust, reproducible and non-invasive measurement of CBF in rats. SAGE Publications 2018-03-02 2019-08 /pmc/articles/PMC6681434/ /pubmed/29498562 http://dx.doi.org/10.1177/0271678X18756218 Text en © The Author(s) 2018 http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Articles Larkin, James R Simard, Manon A Khrapitchev, Alexandre A Meakin, James A Okell, Thomas W Craig, Martin Ray, Kevin J Jezzard, Peter Chappell, Michael A Sibson, Nicola R Quantitative blood flow measurement in rat brain with multiphase arterial spin labelling magnetic resonance imaging |
title | Quantitative blood flow measurement in rat brain with multiphase
arterial spin labelling magnetic resonance imaging |
title_full | Quantitative blood flow measurement in rat brain with multiphase
arterial spin labelling magnetic resonance imaging |
title_fullStr | Quantitative blood flow measurement in rat brain with multiphase
arterial spin labelling magnetic resonance imaging |
title_full_unstemmed | Quantitative blood flow measurement in rat brain with multiphase
arterial spin labelling magnetic resonance imaging |
title_short | Quantitative blood flow measurement in rat brain with multiphase
arterial spin labelling magnetic resonance imaging |
title_sort | quantitative blood flow measurement in rat brain with multiphase
arterial spin labelling magnetic resonance imaging |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681434/ https://www.ncbi.nlm.nih.gov/pubmed/29498562 http://dx.doi.org/10.1177/0271678X18756218 |
work_keys_str_mv | AT larkinjamesr quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging AT simardmanona quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging AT khrapitchevalexandrea quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging AT meakinjamesa quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging AT okellthomasw quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging AT craigmartin quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging AT raykevinj quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging AT jezzardpeter quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging AT chappellmichaela quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging AT sibsonnicolar quantitativebloodflowmeasurementinratbrainwithmultiphasearterialspinlabellingmagneticresonanceimaging |