Cargando…
Identifying Smoking Environments From Images of Daily Life With Deep Learning
IMPORTANCE: Environments associated with smoking increase a smoker’s craving to smoke and may provoke lapses during a quit attempt. Identifying smoking risk environments from images of a smoker’s daily life provides a basis for environment-based interventions. OBJECTIVE: To apply a deep learning app...
Autores principales: | Engelhard, Matthew M., Oliver, Jason A., Henao, Ricardo, Hallyburton, Matt, Carin, Lawrence E., Conklin, Cynthia, McClernon, F. Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681554/ https://www.ncbi.nlm.nih.gov/pubmed/31373647 http://dx.doi.org/10.1001/jamanetworkopen.2019.7939 |
Ejemplares similares
-
Smokers’ Self-Report and Behavioral Reactivity to Combined Personal Smoking Cues (Proximal + Environment + People): A Pilot Study
por: Conklin, Cynthia A., et al.
Publicado: (2022) -
Prediction of Smoking Risk From Repeated Sampling of Environmental Images: Model Validation
por: Engelhard, Matthew M, et al.
Publicado: (2021) -
Digital envirotyping: quantifying environmental determinants of health and behavior
por: Engelhard, Matthew M., et al.
Publicado: (2020) -
Effects of varenicline and cognitive bias modification on neural response to smoking-related cues: study protocol for a randomized controlled study
por: Attwood, Angela S, et al.
Publicado: (2014) -
A randomized, controlled trial of initial anti-retroviral therapy with abacavir/lamivudine/zidovudine twice-daily compared to atazanavir once-daily with lamivudine/zidovudine twice-daily in HIV-infected patients over 48 weeks (ESS100327, the ACTION Study)
por: Kumar, Princy N, et al.
Publicado: (2009)