Cargando…

CTRP3 Protects against High Glucose-Induced Cell Injury in Human Umbilical Vein Endothelial Cells

AIMS: Inflammation was closely associated with diabetes-related endothelial dysfunction. C1q/tumor necrosis factor-related protein 3 (CTRP3) is a member of the CTRP family and can provide cardioprotection in many cardiovascular diseases via suppressing the production of inflammatory factors. However...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Fang, Zhao, Linlin, Shan, Yingguang, Li, Ran, Qin, Guijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681575/
https://www.ncbi.nlm.nih.gov/pubmed/31428552
http://dx.doi.org/10.1155/2019/7405602
Descripción
Sumario:AIMS: Inflammation was closely associated with diabetes-related endothelial dysfunction. C1q/tumor necrosis factor-related protein 3 (CTRP3) is a member of the CTRP family and can provide cardioprotection in many cardiovascular diseases via suppressing the production of inflammatory factors. However, the role of CTRP3 in high glucose- (HG-) related endothelial dysfunction remains unclear. This study evaluates the effects of CTRP3 on HG-induced cell inflammation and apoptosis. MATERIALS AND METHODS: To prevent high glucose-induced cell injury, human umbilical vein endothelial cells (HUVECs) were pretreated with recombinant CTRP3 for 1 hour followed by normal glucose (5.5 mmol/l) or high glucose (33 mmol/l) treatment. After that, cell apoptosis and inflammatory factors were determined. RESULTS: Our results demonstrated that CTRP3 mRNA and protein expression were significantly decreased after HG exposure in HUVECs. Recombinant human CTRP3 inhibited HG-induced accumulation of inflammatory factors and cell loss in HUVECs. CTRP3 treatment also increased the phosphorylation levels of protein kinase B (AKT/PKB) and the mammalian target of rapamycin (mTOR) in HUVECs. CTRP3 lost its inhibitory effects on HG-induced cell inflammation and apoptosis after AKT inhibition. Knockdown of endogenous CTRP3 in HUVECs resulted in increased inflammation and decreased cell viability in vitro. CONCLUSIONS: Taken together, these findings indicated that CTRP3 treatment blocked the accumulation of inflammatory factors and cell loss in HUVECs after HG exposure through the activation of AKT-mTOR signaling pathway. Thus, CTRP3 may be a potential therapeutic drug for the prevention of diabetes-related endothelial dysfunction.