Cargando…

Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach

This paper explores the model parameters estimation of a quadrotor UAV by exploiting the cooperative particle swarm optimization-cuckoo search (PSO-CS). The PSO-CS regulates the convergence velocity benefiting from the capabilities of social thinking and local search in PSO and CS. To evaluate the e...

Descripción completa

Detalles Bibliográficos
Autores principales: El gmili, Nada, Mjahed, Mostafa, El kari, Abdeljalil, Ayad, Hassan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681585/
https://www.ncbi.nlm.nih.gov/pubmed/31428142
http://dx.doi.org/10.1155/2019/8925165
Descripción
Sumario:This paper explores the model parameters estimation of a quadrotor UAV by exploiting the cooperative particle swarm optimization-cuckoo search (PSO-CS). The PSO-CS regulates the convergence velocity benefiting from the capabilities of social thinking and local search in PSO and CS. To evaluate the efficiency of the proposed methods, it is regarded as important to apply these approaches for identifying the autonomous complex and nonlinear dynamics of the quadrotor. After defining the quadrotor dynamic modelling using Newton–Euler formalism, the quadrotor model's parameters are extracted by using intelligent PSO, CS, PSO-CS, and the statistical least squares (LS) methods. Finally, simulation results prove that PSO and PSO-CS are more efficient in optimal tuning of parameters values for the quadrotor identification.