Cargando…
Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach
This paper explores the model parameters estimation of a quadrotor UAV by exploiting the cooperative particle swarm optimization-cuckoo search (PSO-CS). The PSO-CS regulates the convergence velocity benefiting from the capabilities of social thinking and local search in PSO and CS. To evaluate the e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681585/ https://www.ncbi.nlm.nih.gov/pubmed/31428142 http://dx.doi.org/10.1155/2019/8925165 |
_version_ | 1783441752371232768 |
---|---|
author | El gmili, Nada Mjahed, Mostafa El kari, Abdeljalil Ayad, Hassan |
author_facet | El gmili, Nada Mjahed, Mostafa El kari, Abdeljalil Ayad, Hassan |
author_sort | El gmili, Nada |
collection | PubMed |
description | This paper explores the model parameters estimation of a quadrotor UAV by exploiting the cooperative particle swarm optimization-cuckoo search (PSO-CS). The PSO-CS regulates the convergence velocity benefiting from the capabilities of social thinking and local search in PSO and CS. To evaluate the efficiency of the proposed methods, it is regarded as important to apply these approaches for identifying the autonomous complex and nonlinear dynamics of the quadrotor. After defining the quadrotor dynamic modelling using Newton–Euler formalism, the quadrotor model's parameters are extracted by using intelligent PSO, CS, PSO-CS, and the statistical least squares (LS) methods. Finally, simulation results prove that PSO and PSO-CS are more efficient in optimal tuning of parameters values for the quadrotor identification. |
format | Online Article Text |
id | pubmed-6681585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-66815852019-08-19 Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach El gmili, Nada Mjahed, Mostafa El kari, Abdeljalil Ayad, Hassan Comput Intell Neurosci Research Article This paper explores the model parameters estimation of a quadrotor UAV by exploiting the cooperative particle swarm optimization-cuckoo search (PSO-CS). The PSO-CS regulates the convergence velocity benefiting from the capabilities of social thinking and local search in PSO and CS. To evaluate the efficiency of the proposed methods, it is regarded as important to apply these approaches for identifying the autonomous complex and nonlinear dynamics of the quadrotor. After defining the quadrotor dynamic modelling using Newton–Euler formalism, the quadrotor model's parameters are extracted by using intelligent PSO, CS, PSO-CS, and the statistical least squares (LS) methods. Finally, simulation results prove that PSO and PSO-CS are more efficient in optimal tuning of parameters values for the quadrotor identification. Hindawi 2019-07-24 /pmc/articles/PMC6681585/ /pubmed/31428142 http://dx.doi.org/10.1155/2019/8925165 Text en Copyright © 2019 Nada El gmili et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article El gmili, Nada Mjahed, Mostafa El kari, Abdeljalil Ayad, Hassan Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach |
title | Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach |
title_full | Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach |
title_fullStr | Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach |
title_full_unstemmed | Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach |
title_short | Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach |
title_sort | quadrotor identification through the cooperative particle swarm optimization-cuckoo search approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681585/ https://www.ncbi.nlm.nih.gov/pubmed/31428142 http://dx.doi.org/10.1155/2019/8925165 |
work_keys_str_mv | AT elgmilinada quadrotoridentificationthroughthecooperativeparticleswarmoptimizationcuckoosearchapproach AT mjahedmostafa quadrotoridentificationthroughthecooperativeparticleswarmoptimizationcuckoosearchapproach AT elkariabdeljalil quadrotoridentificationthroughthecooperativeparticleswarmoptimizationcuckoosearchapproach AT ayadhassan quadrotoridentificationthroughthecooperativeparticleswarmoptimizationcuckoosearchapproach |