Cargando…
Predicting Posttraumatic Stress Disorder Risk: A Machine Learning Approach
BACKGROUND: A majority of adults in the United States are exposed to a potentially traumatic event but only a handful go on to develop impairing mental health conditions such as posttraumatic stress disorder (PTSD). OBJECTIVE: Identifying those at elevated risk shortly after trauma exposure is a cli...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681635/ https://www.ncbi.nlm.nih.gov/pubmed/31333201 http://dx.doi.org/10.2196/13946 |
Sumario: | BACKGROUND: A majority of adults in the United States are exposed to a potentially traumatic event but only a handful go on to develop impairing mental health conditions such as posttraumatic stress disorder (PTSD). OBJECTIVE: Identifying those at elevated risk shortly after trauma exposure is a clinical challenge. The aim of this study was to develop computational methods to more effectively identify at-risk patients and, thereby, support better early interventions. METHODS: We proposed machine learning (ML) induction of models to automatically predict elevated PTSD symptoms in patients 1 month after a trauma, using self-reported symptoms from data collected via smartphones. RESULTS: We show that an ensemble model accurately predicts elevated PTSD symptoms, with an area under the curve (AUC) of .85, using a bag of support vector machines, naive Bayes, logistic regression, and random forest algorithms. Furthermore, we show that only 7 self-reported items (features) are needed to obtain this AUC. Most importantly, we show that accurate predictions can be made 10 to 20 days posttrauma. CONCLUSIONS: These results suggest that simple smartphone-based patient surveys, coupled with automated analysis using ML-trained models, can identify those at risk for developing elevated PTSD symptoms and thus target them for early intervention. |
---|