Cargando…
Predicting Posttraumatic Stress Disorder Risk: A Machine Learning Approach
BACKGROUND: A majority of adults in the United States are exposed to a potentially traumatic event but only a handful go on to develop impairing mental health conditions such as posttraumatic stress disorder (PTSD). OBJECTIVE: Identifying those at elevated risk shortly after trauma exposure is a cli...
Autores principales: | Wshah, Safwan, Skalka, Christian, Price, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681635/ https://www.ncbi.nlm.nih.gov/pubmed/31333201 http://dx.doi.org/10.2196/13946 |
Ejemplares similares
-
Machine deep learning accurately detects endoleak after endovascular abdominal aortic aneurysm repair
por: Hahn, Sage, et al.
Publicado: (2020) -
Development and Validation of a Machine Learning Prediction Model of Posttraumatic Stress Disorder After Military Deployment
por: Papini, Santiago, et al.
Publicado: (2023) -
Machine learning to reveal hidden risk combinations for the trajectory of posttraumatic stress disorder symptoms
por: Takahashi, Yuta, et al.
Publicado: (2020) -
Risk factors for complex posttraumatic stress disorder in UK police
por: Steel, C, et al.
Publicado: (2021) -
Embitterment in War Veterans with Posttraumatic Stress Disorder
por: Sabic, Dzevad, et al.
Publicado: (2018)