Cargando…
Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease Diagnostics
[Image: see text] A liquid matrix-assisted laser desorption/ionization (liquid MALDI) method has been developed for high-throughput atmospheric pressure (AP) mass spectrometry (MS) analysis of the molecular content of crude bioliquids for disease diagnostics. The presented method is rapid and highly...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681994/ https://www.ncbi.nlm.nih.gov/pubmed/31460399 http://dx.doi.org/10.1021/acsomega.9b01476 |
_version_ | 1783441806430568448 |
---|---|
author | Hale, Oliver J. Morris, Michael Jones, Barney Reynolds, Christopher K. Cramer, Rainer |
author_facet | Hale, Oliver J. Morris, Michael Jones, Barney Reynolds, Christopher K. Cramer, Rainer |
author_sort | Hale, Oliver J. |
collection | PubMed |
description | [Image: see text] A liquid matrix-assisted laser desorption/ionization (liquid MALDI) method has been developed for high-throughput atmospheric pressure (AP) mass spectrometry (MS) analysis of the molecular content of crude bioliquids for disease diagnostics. The presented method is rapid and highly robust, enabling its application in environments where speed and low-cost high-throughput analyses are required. Importantly, because of the creation of multiply charged analyte ions, it provides additional functionalities that conventional solid MALDI MS profiling is lacking, including the use of high-performance mass analyzers with limited m/z range. The concomitant superior MS/MS performance that is achieved similar to ESI MS/MS adds greater analytical power and specificity to MALDI MS profiling while retaining the advantages of a fast laser-based analysis system and off-line large-scale sample preparation. The potential of this MALDI MS profiling method is demonstrated on the detection of dairy cow mastitis, which is a substantial economic burden on the dairy industry with losses of hundreds of dollars per diseased cow per year, equating to a total annual loss of billions of dollars, as well as leading to the use of large quantities of antibiotics, adding to the proliferation of antimicrobial resistance. Only small amounts of aliquots obtained from the daily farm milking process were prepared for liquid MALDI MS profiling using a simple one-pot/two-step analyte extraction. Automated analysis was performed using a custom-built AP-MALDI ion source, enabling the simultaneous detection of lipids, peptides, and proteins. Diagnostic, multiply charged, proteinaceous ions were easily sequenced and identified by MS/MS experiments. Samples were classified according to mastitis status using multivariate analysis, achieving 98.5% accuracy (100% specificity) determined by “leave 20% out” cross-validation. The methodology is generally applicable to AP-MALDI MS profiling on most commercial high-resolution mass spectrometers, with the potential for expansion into hospitals for rapid assessment of human and other biofluids. |
format | Online Article Text |
id | pubmed-6681994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-66819942019-08-27 Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease Diagnostics Hale, Oliver J. Morris, Michael Jones, Barney Reynolds, Christopher K. Cramer, Rainer ACS Omega [Image: see text] A liquid matrix-assisted laser desorption/ionization (liquid MALDI) method has been developed for high-throughput atmospheric pressure (AP) mass spectrometry (MS) analysis of the molecular content of crude bioliquids for disease diagnostics. The presented method is rapid and highly robust, enabling its application in environments where speed and low-cost high-throughput analyses are required. Importantly, because of the creation of multiply charged analyte ions, it provides additional functionalities that conventional solid MALDI MS profiling is lacking, including the use of high-performance mass analyzers with limited m/z range. The concomitant superior MS/MS performance that is achieved similar to ESI MS/MS adds greater analytical power and specificity to MALDI MS profiling while retaining the advantages of a fast laser-based analysis system and off-line large-scale sample preparation. The potential of this MALDI MS profiling method is demonstrated on the detection of dairy cow mastitis, which is a substantial economic burden on the dairy industry with losses of hundreds of dollars per diseased cow per year, equating to a total annual loss of billions of dollars, as well as leading to the use of large quantities of antibiotics, adding to the proliferation of antimicrobial resistance. Only small amounts of aliquots obtained from the daily farm milking process were prepared for liquid MALDI MS profiling using a simple one-pot/two-step analyte extraction. Automated analysis was performed using a custom-built AP-MALDI ion source, enabling the simultaneous detection of lipids, peptides, and proteins. Diagnostic, multiply charged, proteinaceous ions were easily sequenced and identified by MS/MS experiments. Samples were classified according to mastitis status using multivariate analysis, achieving 98.5% accuracy (100% specificity) determined by “leave 20% out” cross-validation. The methodology is generally applicable to AP-MALDI MS profiling on most commercial high-resolution mass spectrometers, with the potential for expansion into hospitals for rapid assessment of human and other biofluids. American Chemical Society 2019-07-26 /pmc/articles/PMC6681994/ /pubmed/31460399 http://dx.doi.org/10.1021/acsomega.9b01476 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Hale, Oliver J. Morris, Michael Jones, Barney Reynolds, Christopher K. Cramer, Rainer Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease Diagnostics |
title | Liquid Atmospheric Pressure Matrix-Assisted Laser
Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease
Diagnostics |
title_full | Liquid Atmospheric Pressure Matrix-Assisted Laser
Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease
Diagnostics |
title_fullStr | Liquid Atmospheric Pressure Matrix-Assisted Laser
Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease
Diagnostics |
title_full_unstemmed | Liquid Atmospheric Pressure Matrix-Assisted Laser
Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease
Diagnostics |
title_short | Liquid Atmospheric Pressure Matrix-Assisted Laser
Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease
Diagnostics |
title_sort | liquid atmospheric pressure matrix-assisted laser
desorption/ionization mass spectrometry adds enhanced functionalities to maldi ms profiling for disease
diagnostics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681994/ https://www.ncbi.nlm.nih.gov/pubmed/31460399 http://dx.doi.org/10.1021/acsomega.9b01476 |
work_keys_str_mv | AT haleoliverj liquidatmosphericpressurematrixassistedlaserdesorptionionizationmassspectrometryaddsenhancedfunctionalitiestomaldimsprofilingfordiseasediagnostics AT morrismichael liquidatmosphericpressurematrixassistedlaserdesorptionionizationmassspectrometryaddsenhancedfunctionalitiestomaldimsprofilingfordiseasediagnostics AT jonesbarney liquidatmosphericpressurematrixassistedlaserdesorptionionizationmassspectrometryaddsenhancedfunctionalitiestomaldimsprofilingfordiseasediagnostics AT reynoldschristopherk liquidatmosphericpressurematrixassistedlaserdesorptionionizationmassspectrometryaddsenhancedfunctionalitiestomaldimsprofilingfordiseasediagnostics AT cramerrainer liquidatmosphericpressurematrixassistedlaserdesorptionionizationmassspectrometryaddsenhancedfunctionalitiestomaldimsprofilingfordiseasediagnostics |