Cargando…
Polymer Brushes Immersed in Two-Component Solvents with Pure Volume Exclusion: Effect of Solvent Molecular Shape
[Image: see text] Polymer brushes have wide application in surface modification. We study dense, short polymer brushes immersed in a mixing solvent under athermal conditions using the classical density functional theory. The brush polymer is short so that the equilibrium behavior of the brush deviat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682017/ https://www.ncbi.nlm.nih.gov/pubmed/31460419 http://dx.doi.org/10.1021/acsomega.9b01800 |
Sumario: | [Image: see text] Polymer brushes have wide application in surface modification. We study dense, short polymer brushes immersed in a mixing solvent under athermal conditions using the classical density functional theory. The brush polymer is short so that the equilibrium behavior of the brush deviates far from the scaling laws for infinite brush chains. The excluded volume interaction is the only interaction in the system. We compare the excluded volume effect of solvent molecules of different shapes. Two types of mixing solvents are considered: solvent composed of linear oligomers and monomers, or that of spherical particles and monomers. The effects of grafting density, solvent molecular size, and solvent number density on the brush height, the density profiles, the relative excess adsorption, and the brush–solvent interface width are systematically analyzed. In the adsorption aspect, the spherical particles have stronger ability than the linear oligomers do to penetrate through the brush layer and gather at the substrate. In the screening aspect, the oligomers are more capable of screening the excluded volume interaction between the brush chains than the spherical particles. The brush–solvent interface width decreases monotonically with increasing oligomer length, but it has a minimum with the increasing spherical particle size. Our research differentiates the attractive-interaction-induced phenomenon and the volume-exclusion-induced phenomenon in dense brush systems and exhibits the difference in the antifouling properties of the brushes contacting solvent molecules of different shapes. |
---|