Cargando…
Dual-Energy CT Texture Analysis With Machine Learning for the Evaluation and Characterization of Cervical Lymphadenopathy
PURPOSE: To determine whether machine learning assisted-texture analysis of multi-energy virtual monochromatic image (VMI) datasets from dual-energy CT (DECT) can be used to differentiate metastatic head and neck squamous cell carcinoma (HNSCC) lymph nodes from lymphoma, inflammatory, or normal lymp...
Autores principales: | Seidler, Matthew, Forghani, Behzad, Reinhold, Caroline, Pérez-Lara, Almudena, Romero-Sanchez, Griselda, Muthukrishnan, Nikesh, Wichmann, Julian L., Melki, Gabriel, Yu, Eugene, Forghani, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682309/ https://www.ncbi.nlm.nih.gov/pubmed/31406557 http://dx.doi.org/10.1016/j.csbj.2019.07.004 |
Ejemplares similares
-
Radiomics and Artificial Intelligence for Biomarker and Prediction Model Development in Oncology
por: Forghani, Reza, et al.
Publicado: (2019) -
Radiomics and machine learning for the diagnosis of pediatric cervical non-tuberculous mycobacterial lymphadenitis
por: Al Bulushi, Yarab, et al.
Publicado: (2022) -
Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models
por: Liu, Xiaoyang, et al.
Publicado: (2021) -
CT-based radiomics model with machine learning for predicting primary treatment failure in diffuse large B-cell Lymphoma
por: Santiago, Raoul, et al.
Publicado: (2021) -
DECT-CLUST: Dual-Energy CT Image Clustering and Application to Head and Neck Squamous Cell Carcinoma Segmentation
por: Chamroukhi, Faicel, et al.
Publicado: (2022)