Cargando…
Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists
OBJECTIVE: The purpose of this study was: To test whether machine learning classifiers for transition zone (TZ) and peripheral zone (PZ) can correctly classify prostate tumors into those with/without a Gleason 4 component, and to compare the performance of the best performing classifiers against the...
Autores principales: | Antonelli, Michela, Johnston, Edward W., Dikaios, Nikolaos, Cheung, King K., Sidhu, Harbir S., Appayya, Mrishta B., Giganti, Francesco, Simmons, Lucy A. M., Freeman, Alex, Allen, Clare, Ahmed, Hashim U., Atkinson, David, Ourselin, Sebastien, Punwani, Shonit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682575/ https://www.ncbi.nlm.nih.gov/pubmed/31187216 http://dx.doi.org/10.1007/s00330-019-06244-2 |
Ejemplares similares
-
Multi-parametric MRI zone-specific diagnostic model performance compared with experienced radiologists for detection of prostate cancer
por: Dikaios, Nikolaos, et al.
Publicado: (2018) -
Radiologists in the loop: the roles of radiologists in the development of AI applications
por: Scheek, Damian, et al.
Publicado: (2021) -
Algorithmic transparency and interpretability measures improve radiologists’ performance in BI-RADS 4 classification
por: Jungmann, Friederike, et al.
Publicado: (2022) -
An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: expectations, hurdles to implementation, and education
por: Huisman, Merel, et al.
Publicado: (2021) -
An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: fear of replacement, knowledge, and attitude
por: Huisman, Merel, et al.
Publicado: (2021)