Cargando…
Performance of machine learning software to classify breast lesions using BI-RADS radiomic features on ultrasound images
BACKGROUND: The purpose of this work was to evaluate computable Breast Imaging Reporting and Data System (BI-RADS) radiomic features to classify breast masses on ultrasound B-mode images. METHODS: The database consisted of 206 consecutive lesions (144 benign and 62 malignant) proved by percutaneous...
Autores principales: | Fleury, Eduardo, Marcomini, Karem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682836/ https://www.ncbi.nlm.nih.gov/pubmed/31385114 http://dx.doi.org/10.1186/s41747-019-0112-7 |
Ejemplares similares
-
The Feasibility of Classifying Breast Masses Using a Computer-Assisted Diagnosis (CAD) System Based on Ultrasound Elastography and BI-RADS Lexicon
por: Fleury, Eduardo F. C., et al.
Publicado: (2018) -
Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement
por: Fleury, Eduardo F. C., et al.
Publicado: (2020) -
Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance
por: Debbi, Kawtar, et al.
Publicado: (2023) -
Application of MRI Radiomics-Based Machine Learning Model to Improve Contralateral BI-RADS 4 Lesion Assessment
por: Hao, Wen, et al.
Publicado: (2020) -
BI-RADS Reading of Non-Mass Lesions on DCE-MRI and Differential Diagnosis Performed by Radiomics and Deep Learning
por: Zhou, Jiejie, et al.
Publicado: (2021)