Cargando…
Phenotyping Women Based on Dietary Macronutrients, Physical Activity, and Body Weight Using Machine Learning Tools
Nutritional phenotyping can help achieve personalized nutrition, and machine learning tools may offer novel means to achieve phenotyping. The primary aim of this study was to use energy balance components, namely input (dietary energy intake and macronutrient composition) and output (physical activi...
Autores principales: | Ramyaa, Ramyaa, Hosseini, Omid, Krishnan, Giri P., Krishnan, Sridevi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682952/ https://www.ncbi.nlm.nih.gov/pubmed/31336626 http://dx.doi.org/10.3390/nu11071681 |
Ejemplares similares
-
Sleep-like unsupervised replay reduces catastrophic forgetting in artificial neural networks
por: Tadros, Timothy, et al.
Publicado: (2022) -
Self-perceived need for dental care
por: Dhanasekaran, Ramyaa, et al.
Publicado: (2015) -
Assessing Insulin Sensitivity and Postprandial Triglyceridemic Response Phenotypes With a Mixed Macronutrient Tolerance Test
por: Newman, John W., et al.
Publicado: (2022) -
A clinical study of retinoblastoma
por: Subha, L., et al.
Publicado: (2015) -
Influence of Different Types of Retinal Cameras on the Performance of Deep Learning Algorithms in Diabetic Retinopathy Screening
por: Srinivasan, Ramyaa, et al.
Publicado: (2022)