Cargando…

High-resolution dynamic inversion imaging with motion-aberrations-free using optical flow learning networks

Dynamic optical imaging (e.g. time delay integration imaging) is troubled by the motion blur fundamentally arising from mismatching between photo-induced charge transfer and optical image movements. Motion aberrations from the forward dynamic imaging link impede the acquiring of high-quality images....

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jin, Liu, Zilong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683134/
https://www.ncbi.nlm.nih.gov/pubmed/31383880
http://dx.doi.org/10.1038/s41598-019-47564-z
Descripción
Sumario:Dynamic optical imaging (e.g. time delay integration imaging) is troubled by the motion blur fundamentally arising from mismatching between photo-induced charge transfer and optical image movements. Motion aberrations from the forward dynamic imaging link impede the acquiring of high-quality images. Here, we propose a high-resolution dynamic inversion imaging method based on optical flow neural learning networks. Optical flow is reconstructed via a multilayer neural learning network. The optical flow is able to construct the motion spread function that enables computational reconstruction of captured images with a single digital filter. This works construct the complete dynamic imaging link, involving the backward and forward imaging link, and demonstrates the capability of the back-ward imaging by reducing motion aberrations.