Cargando…

Seismic loading of fault-controlled fluid seepage systems by great subduction earthquakes

Various types of fluid expulsion features (mud volcanoes, pockmarks, authigenic carbonate mounds and associated gas pipes, etc.) are often found above subduction zones, which have the highest seismic potential on Earth. Faults potentially control the liberation of deep-seated greenhouse gases into t...

Descripción completa

Detalles Bibliográficos
Autor principal: Bonini, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683289/
https://www.ncbi.nlm.nih.gov/pubmed/31383890
http://dx.doi.org/10.1038/s41598-019-47686-4
Descripción
Sumario:Various types of fluid expulsion features (mud volcanoes, pockmarks, authigenic carbonate mounds and associated gas pipes, etc.) are often found above subduction zones, which have the highest seismic potential on Earth. Faults potentially control the liberation of deep-seated greenhouse gases into the feeder systems of seepage features located above subduction thrusts. These feeder systems could be stressed by large earthquakes, yet the mechanisms that can drive episodic mobilization of stored hydrocarbon gases remain poorly understood. Here I address the potential stress loading on fluid expulsion systems created by past earthquakes nucleated at both accretionary and erosive subduction margins. The most significant effects occur in the epicentral area where subduction earthquakes can produce normal stress changes as high as 20–100 bar, although these are generally restricted to relatively small regions. Coseismic normal stress changes and elastic strain relaxation upon a ruptured subduction thrust could increase crustal permeability by dilating fault-controlled conduits, and channelling fluids to the seafloor. Fluid pressure pulses released during subduction earthquakes can greatly contribute to the rupture of fluid pathways that have been brought closer to failure from coseismic static stress changes, although the inaccessible location of most submarine seepage systems has so far hampered probing these relationships.