Cargando…

Modeling Culicoides abundance in mainland France: implications for surveillance

BACKGROUND: Biting midges of the genus Culicoides Latreille (Diptera: Ceratopogonidae) are involved in the transmission of several viruses affecting humans and livestock, particularly bluetongue (BTV). Over the last decade, Culicoides surveillance has been conducted discontinuously and at various te...

Descripción completa

Detalles Bibliográficos
Autores principales: Villard, Pierre, Muñoz, Facundo, Balenghien, Thomas, Baldet, Thierry, Lancelot, Renaud, Hénaux, Viviane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683357/
https://www.ncbi.nlm.nih.gov/pubmed/31387649
http://dx.doi.org/10.1186/s13071-019-3642-1
Descripción
Sumario:BACKGROUND: Biting midges of the genus Culicoides Latreille (Diptera: Ceratopogonidae) are involved in the transmission of several viruses affecting humans and livestock, particularly bluetongue (BTV). Over the last decade, Culicoides surveillance has been conducted discontinuously and at various temporal and spatial scales in mainland France following the BTV epizootics in 2008–2009 and its reemergence and continuous circulation since 2015. The ability to predict seasonal dynamics and spatial abundance of Culicoides spp. is a key element in identifying periods and areas at high risk of transmission in order to strengthen surveillance for early detection and to establish seasonally disease-free zones. The objective of this study was to model the abundance of Culicoides spp. using surveillance data. METHODS: A mixed-effect Poisson model, adjusted for overdispersion and taking into account temperature data at each trap location, was used to model the weekly relative abundance of Culicoides spp. over a year in 24 vector zones, based on surveillance data collected during 2009–2012. Vector zones are the spatial units used for Culicoides surveillance since 2016 in mainland France. RESULTS: The curves of the predicted annual abundance of Culicoides spp. in vector zones showed three different shapes: unimodal, bimodal or plateau, reflecting the temporal variability of the observed counts between zones. For each vector zone, the model enabled to identify periods of vector activity ranging from 25 to 51 weeks. CONCLUSIONS: Although the data were collected for surveillance purposes, our modeling approach integrating vector data with daily temperatures, which are known to be major drivers of Culicoides spp. activity, provided areas-specific predictions of Culicoides spp. abundance. Our findings provide decisions makers with essential information to identify risk periods in each vector zone and guide the allocation of resources for surveillance and control. Knowledge of Culicoides spp. dynamics is also of primary importance for modeling the risk of establishment and spread of midge-borne diseases in mainland France. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13071-019-3642-1) contains supplementary material, which is available to authorized users.