Cargando…

The role of RENAL, PADUA, C-index, CSA nephrometry systems in predicting ipsilateral renal function after partial nephrectomy

BACKGROUND: Functional outcome is an important issue in nephron-sparing surgery. Various nephrometries have been developed to predict renal function preservation. The aim of this study was to examine the applicability of R.E.N.A.L., PADUA, C-index, and mathematical tumor contact surface area (CSA) i...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yu-De, Huang, Chi-Ping, Chang, Chao-Hsiang, Wu, Hsi-Chin, Yang, Che-Rei, Wang, Yu-Ping, Hsieh, Po-Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683378/
https://www.ncbi.nlm.nih.gov/pubmed/31382944
http://dx.doi.org/10.1186/s12894-019-0504-2
Descripción
Sumario:BACKGROUND: Functional outcome is an important issue in nephron-sparing surgery. Various nephrometries have been developed to predict renal function preservation. The aim of this study was to examine the applicability of R.E.N.A.L., PADUA, C-index, and mathematical tumor contact surface area (CSA) in predicting ipsilateral renal function after partial nephrectomy using radio-isotope scans. METHODS: We performed this retrospective study in patients who underwent partial nephrectomy between May 2013 and April 2017, and used abdominopelvic computerized tomography or magnetic resonance imaging to obtain R.E.N.A.L., C-index, and CSA. Renal function was measured by 99mTc mercaptoacetyltriglycine (MAG3). We evaluated correlations between nephrometries and perioperative parameters, and comparatively analyzed different nephrometries to determine the predictive ability in the percent change of effective renal plasma flow of the affected kidney. RESULTS: Three, two, and 35 patients received partial nephrectomy in open, laparoscopic, and robotic approaches, respectively. The median (IQR) tumor size was 3.13 (2.4) cm. The median (IQR) R.E.N.A.L., PADUA, C-index, and CSA scores were 7 (3), 8 (2), 2.01 (1.87), and 14.14 (19.25) cm(2), respectively. Spearman correlation analysis showed that four nephrometries were correlated with each other. The strongest correlations were between CSA and C-index (coefficient: − 0.885, p < 0.001), followed by R.E.N.A.L. and PADUA (coefficient: 0.778, p < 0.001). Ischemia time was significantly correlated with R.EN.A.L. (coefficient: 0.35, p = 0.025), PADUA (coefficient: 0.42, p = 0.007), C-index (coefficient: − 0.45, p = 0.004), and CSA (coefficient: 0.41, p = 0.009). In multivariate analysis, PADUA significantly affected ischemia time (p = 0.04). The percent change in effective renal plasma flow (PCE) of the operated kidney was correlated with PADUA (coefficient: 0.48 p = 0.002), C-index (coefficient: − 0.74, p < 0.001), and CSA (coefficient: 0.75, p < 0.001). Only CSA and C-index independently affected PCE (both p < 0.05) in multivariate analysis. In ROC curve analysis, both C-index and CSA could predict 20% change in effective renal plasma flow (AUC: 0.91 vs 0.86, p = 0.2) of the affected kidney. CONCLUSIONS: We suggest using PADUA to evaluate surgical complexity and ischemia time. Regarding the accuracy of the prediction of post-operative ipsilateral renal function, both CSA and C-index outperformed R.E.N.A.L. and PADUA nephrometries.