Cargando…
Machine Learning Model for Imbalanced Cholera Dataset in Tanzania
Cholera epidemic remains a public threat throughout history, affecting vulnerable population living with unreliable water and substandard sanitary conditions. Various studies have observed that the occurrence of cholera has strong linkage with environmental factors such as climate change and geograp...
Autores principales: | Leo, Judith, Luhanga, Edith, Michael, Kisangiri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683776/ https://www.ncbi.nlm.nih.gov/pubmed/31427903 http://dx.doi.org/10.1155/2019/9397578 |
Ejemplares similares
-
Comparison of machine learning techniques to handle imbalanced COVID-19 CBC datasets
por: Dorn, Marcio, et al.
Publicado: (2021) -
Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset
por: Swana, Elsie Fezeka, et al.
Publicado: (2022) -
Monitoring Kikuletwa river levels in northern Tanzania: A data set unlocking insights for effective flood early warning systems
por: Mdegela, Lawrence, et al.
Publicado: (2023) -
A Multi-Modal Wireless Sensor System for River Monitoring: A Case for Kikuletwa River Floods in Tanzania
por: Mdegela, Lawrence, et al.
Publicado: (2023) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018)