Cargando…

The intracellular domain of CX3CL1 regulates adult neurogenesis and Alzheimer’s amyloid pathology

The membrane-anchored CX3CL1 is best known to exert its signaling function through binding its receptor CX3CR1. This study demonstrates a novel function that CX3CL1 exerts. CX3CL1 is sequentially cleaved by α-, β-, and γ-secretase, and the released CX3CL1 intracellular domain (CX3CL1-ICD) would tran...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Qingyuan, Gayen, Manoshi, Singh, Neeraj, Gao, Fan, He, Wanxia, Hu, Xiangyou, Tsai, Li-Huei, Yan, Riqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683996/
https://www.ncbi.nlm.nih.gov/pubmed/31209068
http://dx.doi.org/10.1084/jem.20182238
Descripción
Sumario:The membrane-anchored CX3CL1 is best known to exert its signaling function through binding its receptor CX3CR1. This study demonstrates a novel function that CX3CL1 exerts. CX3CL1 is sequentially cleaved by α-, β-, and γ-secretase, and the released CX3CL1 intracellular domain (CX3CL1-ICD) would translocate into the cell nucleus to alter gene expression due to this back-signaling function. Amyloid deposition and neuronal loss were significantly reduced when membrane-anchored CX3CL1 C-terminal fragment (CX3CL1-ct) was overexpressed in Alzheimer’s 5xFAD mouse model. The reversal of neuronal loss in 5xFAD can be attributed to increased neurogenesis by CX3CL1-ICD, as revealed by morphological and unbiased RNA-sequencing analyses. Mechanistically, this CX3CL1 back-signal likely enhances developmental and adult neurogenesis through the TGFβ2/3-Smad2/3 pathway and other genes important for neurogenesis. Induction of CX3CL1 back-signaling may not only be a promising novel mechanism to replenish neuronal loss but also for reducing amyloid deposition for Alzheimer’s treatment.