Cargando…
A Simple Method for Comparing Complex Models: Bayesian Model Comparison for Hierarchical Multinomial Processing Tree Models Using Warp-III Bridge Sampling
Multinomial processing trees (MPTs) are a popular class of cognitive models for categorical data. Typically, researchers compare several MPTs, each equipped with many parameters, especially when the models are implemented in a hierarchical framework. A Bayesian solution is to compute posterior model...
Autores principales: | Gronau, Quentin F., Wagenmakers, Eric-Jan, Heck, Daniel W., Matzke, Dora |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684497/ https://www.ncbi.nlm.nih.gov/pubmed/30483923 http://dx.doi.org/10.1007/s11336-018-9648-3 |
Ejemplares similares
-
Computing Bayes factors for evidence-accumulation models using Warp-III bridge sampling
por: Gronau, Quentin F., et al.
Publicado: (2019) -
TreeBUGS: An R package for hierarchical multinomial-processing-tree modeling
por: Heck, Daniel W., et al.
Publicado: (2017) -
Limitations of Bayesian Leave-One-Out Cross-Validation for Model Selection
por: Gronau, Quentin F., et al.
Publicado: (2018) -
A tutorial on bridge sampling
por: Gronau, Quentin F., et al.
Publicado: (2017) -
On the importance of avoiding shortcuts in applying cognitive models to hierarchical data
por: Boehm, Udo, et al.
Publicado: (2018)