Cargando…
Hierarchical Hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences
The characterization of antimicrobial resistance genes from high-throughput sequencing data has become foundational in public health research and regulation. This requires mapping sequence reads to databases of known antimicrobial resistance genes to determine the genes present in the sample. Mappin...
Autores principales: | Lakin, Steven M., Kuhnle, Alan, Alipanahi, Bahar, Noyes, Noelle R., Dean, Chris, Muggli, Martin, Raymond, Rob, Abdo, Zaid, Prosperi, Mattia, Belk, Keith E., Morley, Paul S., Boucher, Christina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684577/ https://www.ncbi.nlm.nih.gov/pubmed/31396574 http://dx.doi.org/10.1038/s42003-019-0545-9 |
Ejemplares similares
-
Building large updatable colored de Bruijn graphs via merging
por: Muggli, Martin D, et al.
Publicado: (2019) -
MEGARes: an antimicrobial resistance database for high throughput sequencing
por: Lakin, Steven M., et al.
Publicado: (2017) -
MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data
por: Doster, Enrique, et al.
Publicado: (2019) -
The K-mer antibiotic resistance gene variant analyzer (KARGVA)
por: Marini, Simone, et al.
Publicado: (2023) -
Smart Annotation of Cyclic Data Using Hierarchical Hidden Markov Models
por: Martindale, Christine F., et al.
Publicado: (2017)