Cargando…
DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture
It is critical, but difficult, to catch the small variation in genomic or other kinds of data that differentiates phenotypes or categories. A plethora of data is available, but the information from its genes or elements is spread over arbitrarily, making it challenging to extract relevant details fo...
Autores principales: | Sharma, Alok, Vans, Edwin, Shigemizu, Daichi, Boroevich, Keith A., Tsunoda, Tatsuhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684600/ https://www.ncbi.nlm.nih.gov/pubmed/31388036 http://dx.doi.org/10.1038/s41598-019-47765-6 |
Ejemplares similares
-
DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics
por: Sharma, Alok, et al.
Publicado: (2023) -
DeepFeature: feature selection in nonimage data using convolutional neural network
por: Sharma, Alok, et al.
Publicado: (2021) -
Stepwise iterative maximum likelihood clustering approach
por: Sharma, Alok, et al.
Publicado: (2016) -
A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data
por: Shigemizu, Daichi, et al.
Publicado: (2019) -
Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures
por: Nishino, Jo, et al.
Publicado: (2018)