Cargando…

Metabolomics-based biomarker discovery for bee health monitoring: A proof of concept study concerning nutritional stress in Bombus terrestris

Bee pollinators are exposed to multiple natural and anthropogenic stressors. Understanding the effects of a single stressor in the complex environmental context of antagonistic/synergistic interactions is critical to pollinator monitoring and may serve as early warning system before a pollination cr...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Luoluo, Meeus, Ivan, Rombouts, Caroline, Van Meulebroek, Lieven, Vanhaecke, Lynn, Smagghe, Guy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684606/
https://www.ncbi.nlm.nih.gov/pubmed/31388077
http://dx.doi.org/10.1038/s41598-019-47896-w
Descripción
Sumario:Bee pollinators are exposed to multiple natural and anthropogenic stressors. Understanding the effects of a single stressor in the complex environmental context of antagonistic/synergistic interactions is critical to pollinator monitoring and may serve as early warning system before a pollination crisis. This study aimed to methodically improve the diagnosis of bee stressors using a simultaneous untargeted and targeted metabolomics-based approach. Analysis of 84 Bombus terrestris hemolymph samples found 8 metabolites retained as potential biomarkers that showed excellent discrimination for nutritional stress. In parallel, 8 significantly altered metabolites, as revealed by targeted profiling, were also assigned as candidate biomarkers. Furthermore, machine learning algorithms were applied to the above-described two biomarker sets, whereby the untargeted eight components showed the best classification performance with sensitivity and specificity up to 99% and 100%, respectively. Based on pathway and biochemistry analysis, we propose that gluconeogenesis contributed significantly to blood sugar stability in bumblebees maintained on a low carbohydrate diet. Taken together, this study demonstrates that metabolomics-based biomarker discovery holds promising potential for improving bee health monitoring and to identify stressor related to energy intake and other environmental stressors.