Cargando…
Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity
Human age estimation is an important and difficult challenge. Different biomarkers and numerous approaches have been studied for biological age estimation, each with its advantages and limitations. In this work, we investigate whether physical activity can be exploited for biological age estimation...
Autores principales: | Rahman, Syed Ashiqur, Adjeroh, Donald A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684608/ https://www.ncbi.nlm.nih.gov/pubmed/31388024 http://dx.doi.org/10.1038/s41598-019-46850-0 |
Ejemplares similares
-
Surface-Based Body Shape Index and Its Relationship with All-Cause Mortality
por: Rahman, Syed Ashiqur, et al.
Publicado: (2015) -
Convolutional LSTM models to estimate network traffic
por: Waczynska, Joanna
Publicado: (2021) -
Convolutional LSTM models to estimate network traffic
por: Waczynska, Joanna, et al.
Publicado: (2021) -
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
por: Ordóñez, Francisco Javier, et al.
Publicado: (2016) -
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023)