Cargando…
A Comparison of Shallow and Deep Learning Methods for Predicting Cognitive Performance of Stroke Patients From MRI Lesion Images
Stroke causes behavioral deficits in multiple cognitive domains and there is a growing interest in predicting patient performance from neuroimaging data using machine learning techniques. Here, we investigated a deep learning approach based on convolutional neural networks (CNNs) for predicting the...
Autores principales: | Chauhan, Sucheta, Vig, Lovekesh, De Filippo De Grazia, Michele, Corbetta, Maurizio, Ahmad, Shandar, Zorzi, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684739/ https://www.ncbi.nlm.nih.gov/pubmed/31417388 http://dx.doi.org/10.3389/fninf.2019.00053 |
Ejemplares similares
-
A novel stroke lesion network mapping approach: improved accuracy yet still low deficit prediction
por: Pini, Lorenzo, et al.
Publicado: (2021) -
Recovery of neural dynamics criticality in personalized whole-brain models of stroke
por: Rocha, Rodrigo P., et al.
Publicado: (2022) -
Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists
por: Testolin, Alberto, et al.
Publicado: (2013) -
Improved prediction of missing protein interactome links via anomaly detection
por: Singh, Kushal Veer, et al.
Publicado: (2017) -
From shallow to deep knowledge
por: De Swaan-Arons, H
Publicado: (1987)