Cargando…
Exploiting Graphoelements and Convolutional Neural Networks with Long Short Term Memory for Classification of the Human Electroencephalogram
The electroencephalogram (EEG) is a cornerstone of neurophysiological research and clinical neurology. Historically, the classification of EEG as showing normal physiological or abnormal pathological activity has been performed by expert visual review. The potential value of unbiased, automated EEG...
Autores principales: | Nejedly, P., Kremen, V., Sladky, V., Cimbalnik, J., Klimes, P., Plesinger, F., Viscor, I., Pail, M., Halamek, J., Brinkmann, B. H., Brazdil, M., Jurak, P., Worrell, G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684807/ https://www.ncbi.nlm.nih.gov/pubmed/31388101 http://dx.doi.org/10.1038/s41598-019-47854-6 |
Ejemplares similares
-
Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals
por: Nejedly, Petr, et al.
Publicado: (2020) -
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
por: Nejedly, Petr, et al.
Publicado: (2018) -
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
por: Nejedly, Petr, et al.
Publicado: (2023) -
Shadows of very high-frequency oscillations can be detected in lower frequency bands of routine stereoelectroencephalography
por: Vasickova, Zuzana, et al.
Publicado: (2023) -
Interictal invasive very high-frequency oscillations in resting awake state and sleep
por: Revajová, Karin, et al.
Publicado: (2023)