Cargando…
Convolutional Neural Networks for Spectroscopic Analysis in Retinal Oximetry
Retinal oximetry is a non-invasive technique to investigate the hemodynamics, vasculature and health of the eye. Current techniques for retinal oximetry have been plagued by quantitatively inconsistent measurements and this has greatly limited their adoption in clinical environments. To become clini...
Autores principales: | DePaoli, Damon T., Tossou, Prudencio, Parent, Martin, Sauvageau, Dominic, Côté, Daniel C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684811/ https://www.ncbi.nlm.nih.gov/pubmed/31388136 http://dx.doi.org/10.1038/s41598-019-47621-7 |
Ejemplares similares
-
Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system
por: DePaoli, Damon T., et al.
Publicado: (2018) -
Automated spectroscopic modelling with optimised convolutional neural networks
por: Shen, Zefang, et al.
Publicado: (2021) -
Adaptive spectroscopic visible-light optical coherence tomography for clinical retinal oximetry
por: Rubinoff, Ian, et al.
Publicado: (2023) -
Endoscopic imaging of white matter fiber tracts using polarization-sensitive optical coherence tomography
por: DePaoli, Damon, et al.
Publicado: (2022) -
Advances in Retinal Oximetry
por: Garg, Anupam K., et al.
Publicado: (2021)