Cargando…
Model selection and parameter estimation for root architecture models using likelihood-free inference
Plant root systems play vital roles in the biosphere, environment and agriculture, but the quantitative principles governing their growth and architecture remain poorly understood. The ‘forward problem’ of what root forms can arise from given models and parameters has been well studied through model...
Autores principales: | Ziegler, Clare, Dyson, Rosemary J., Johnston, Iain G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685013/ https://www.ncbi.nlm.nih.gov/pubmed/31288651 http://dx.doi.org/10.1098/rsif.2019.0293 |
Ejemplares similares
-
Parameter inference in a computational model of haemodynamics in pulmonary hypertension
por: Colunga, Amanda L., et al.
Publicado: (2023) -
Multi-model and network inference based on ensemble estimates: avoiding the madness of crowds
por: Stumpf, Michael P. H.
Publicado: (2020) -
Full observability and estimation of unknown inputs, states and parameters of nonlinear biological models
por: Villaverde, Alejandro F., et al.
Publicado: (2019) -
Bayesian inference on a microstructural, hyperelastic model of tendon deformation
por: Haughton, James, et al.
Publicado: (2022) -
Inference and uncertainty quantification of stochastic gene expression via synthetic models
por: Öcal, Kaan, et al.
Publicado: (2022)