Cargando…
Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification
Deep neural networks have led to state-of-the-art results in many medical imaging tasks including Alzheimer's disease (AD) detection based on structural magnetic resonance imaging (MRI) data. However, the network decisions are often perceived as being highly non-transparent, making it difficult...
Autores principales: | Böhle, Moritz, Eitel, Fabian, Weygandt, Martin, Ritter, Kerstin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685087/ https://www.ncbi.nlm.nih.gov/pubmed/31417397 http://dx.doi.org/10.3389/fnagi.2019.00194 |
Ejemplares similares
-
Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
por: Eitel, Fabian, et al.
Publicado: (2019) -
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
por: Bach, Sebastian, et al.
Publicado: (2015) -
Layer-wise relevance propagation of InteractionNet explains protein–ligand interactions at the atom level
por: Cho, Hyeoncheol, et al.
Publicado: (2020) -
Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
por: Eitel, Fabian, et al.
Publicado: (2021) -
The effects of layer-wise relevance propagation-based feature selection for EEG classification: a comparative study on multiple datasets
por: Nam, Hyeonyeong, et al.
Publicado: (2023)