Cargando…
From Rough to Precise: Human-Inspired Phased Target Learning Framework for Redundant Musculoskeletal Systems
Redundant muscles in human-like musculoskeletal robots provide additional dimensions to the solution space. Consequently, the computation of muscle excitations remains an open question. Conventional methods like dynamic optimization and reinforcement learning usually have high computational costs or...
Autores principales: | Zhou, Junjie, Chen, Jiahao, Deng, Hu, Qiao, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685088/ https://www.ncbi.nlm.nih.gov/pubmed/31417392 http://dx.doi.org/10.3389/fnbot.2019.00061 |
Ejemplares similares
-
On the Relationship Between Muscle Synergies and Redundant Degrees of Freedom in Musculoskeletal Systems
por: Sharif Razavian, Reza, et al.
Publicado: (2019) -
BIDL: a brain-inspired deep learning framework for spatiotemporal processing
por: Wu, Zhenzhi, et al.
Publicado: (2023) -
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning
por: Detorakis, Georgios, et al.
Publicado: (2018) -
Constraints on neural redundancy
por: Hennig, Jay A, et al.
Publicado: (2018) -
ACLMHA and FML: A brain-inspired kinship verification framework
por: Li, Chen, et al.
Publicado: (2022)