Cargando…
Novel deep learning model for more accurate prediction of drug-drug interaction effects
BACKGROUND: Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo o...
Autores principales: | Lee, Geonhee, Park, Chihyun, Ahn, Jaegyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685287/ https://www.ncbi.nlm.nih.gov/pubmed/31387547 http://dx.doi.org/10.1186/s12859-019-3013-0 |
Ejemplares similares
-
RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance
por: Choi, Jonghwan, et al.
Publicado: (2020) -
Drug voyager: a computational platform for exploring unintended drug action
por: Oh, Min, et al.
Publicado: (2017) -
Drug-target interaction prediction using semi-bipartite graph model and deep learning
por: Eslami Manoochehri, Hafez, et al.
Publicado: (2020) -
Integrative Gene Network Construction to Analyze Cancer Recurrence Using Semi-Supervised Learning
por: Park, Chihyun, et al.
Publicado: (2014) -
MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning
por: Lin, Shenggeng, et al.
Publicado: (2022)