Cargando…
Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds
Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load‐bearing as bioscaffolds. Herein, a biodegradable high‐strength supramolecular polymer strengthened hydrogel composed of cleavable poly(N‐acryloyl 2‐glycine) (PACG) and methacrylated gelatin (GelMA) (P...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685475/ https://www.ncbi.nlm.nih.gov/pubmed/31406678 http://dx.doi.org/10.1002/advs.201900867 |
_version_ | 1783442408860549120 |
---|---|
author | Gao, Fei Xu, Ziyang Liang, Qingfei Li, Haofei Peng, Liuqi Wu, Mingming Zhao, Xiaoli Cui, Xu Ruan, Changshun Liu, Wenguang |
author_facet | Gao, Fei Xu, Ziyang Liang, Qingfei Li, Haofei Peng, Liuqi Wu, Mingming Zhao, Xiaoli Cui, Xu Ruan, Changshun Liu, Wenguang |
author_sort | Gao, Fei |
collection | PubMed |
description | Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load‐bearing as bioscaffolds. Herein, a biodegradable high‐strength supramolecular polymer strengthened hydrogel composed of cleavable poly(N‐acryloyl 2‐glycine) (PACG) and methacrylated gelatin (GelMA) (PACG‐GelMA) is successfully constructed by photo‐initiated polymerization. Introducing hydrogen bond‐strengthened PACG contributes to a significant increase in the mechanical strengths of gelatin hydrogel with a high tensile strength (up to 1.1 MPa), outstanding compressive strength (up to 12.4 MPa), large Young's modulus (up to 320 kPa), and high compression modulus (up to 837 kPa). In turn, the GelMA chemical crosslinking could stabilize the temporary PACG network, showing tunable biodegradability by adjusting ACG/GelMA ratios. Further, a biohybrid gradient scaffold consisting of top layer of PACG‐GelMA hydrogel‐Mn(2+) and bottom layer of PACG‐GelMA hydrogel‐bioactive glass is fabricated for repair of osteochondral defects by a 3D printing technique. In vitro biological experiments demonstrate that the biohybrid gradient hydrogel scaffold not only supports cell attachment and spreading but also enhances gene expression of chondrogenic‐related and osteogenic‐related differentiation of human bone marrow stem cells. Around 12 weeks after in vivo implantation, the biohybrid gradient hydrogel scaffold significantly facilitates concurrent regeneration of cartilage and subchondral bone in a rat model. |
format | Online Article Text |
id | pubmed-6685475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66854752019-08-12 Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds Gao, Fei Xu, Ziyang Liang, Qingfei Li, Haofei Peng, Liuqi Wu, Mingming Zhao, Xiaoli Cui, Xu Ruan, Changshun Liu, Wenguang Adv Sci (Weinh) Full Papers Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load‐bearing as bioscaffolds. Herein, a biodegradable high‐strength supramolecular polymer strengthened hydrogel composed of cleavable poly(N‐acryloyl 2‐glycine) (PACG) and methacrylated gelatin (GelMA) (PACG‐GelMA) is successfully constructed by photo‐initiated polymerization. Introducing hydrogen bond‐strengthened PACG contributes to a significant increase in the mechanical strengths of gelatin hydrogel with a high tensile strength (up to 1.1 MPa), outstanding compressive strength (up to 12.4 MPa), large Young's modulus (up to 320 kPa), and high compression modulus (up to 837 kPa). In turn, the GelMA chemical crosslinking could stabilize the temporary PACG network, showing tunable biodegradability by adjusting ACG/GelMA ratios. Further, a biohybrid gradient scaffold consisting of top layer of PACG‐GelMA hydrogel‐Mn(2+) and bottom layer of PACG‐GelMA hydrogel‐bioactive glass is fabricated for repair of osteochondral defects by a 3D printing technique. In vitro biological experiments demonstrate that the biohybrid gradient hydrogel scaffold not only supports cell attachment and spreading but also enhances gene expression of chondrogenic‐related and osteogenic‐related differentiation of human bone marrow stem cells. Around 12 weeks after in vivo implantation, the biohybrid gradient hydrogel scaffold significantly facilitates concurrent regeneration of cartilage and subchondral bone in a rat model. John Wiley and Sons Inc. 2019-06-11 /pmc/articles/PMC6685475/ /pubmed/31406678 http://dx.doi.org/10.1002/advs.201900867 Text en © 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Gao, Fei Xu, Ziyang Liang, Qingfei Li, Haofei Peng, Liuqi Wu, Mingming Zhao, Xiaoli Cui, Xu Ruan, Changshun Liu, Wenguang Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds |
title | Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds |
title_full | Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds |
title_fullStr | Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds |
title_full_unstemmed | Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds |
title_short | Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds |
title_sort | osteochondral regeneration with 3d‐printed biodegradable high‐strength supramolecular polymer reinforced‐gelatin hydrogel scaffolds |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685475/ https://www.ncbi.nlm.nih.gov/pubmed/31406678 http://dx.doi.org/10.1002/advs.201900867 |
work_keys_str_mv | AT gaofei osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds AT xuziyang osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds AT liangqingfei osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds AT lihaofei osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds AT pengliuqi osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds AT wumingming osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds AT zhaoxiaoli osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds AT cuixu osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds AT ruanchangshun osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds AT liuwenguang osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds |