Cargando…

Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds

Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load‐bearing as bioscaffolds. Herein, a biodegradable high‐strength supramolecular polymer strengthened hydrogel composed of cleavable poly(N‐acryloyl 2‐glycine) (PACG) and methacrylated gelatin (GelMA) (P...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Fei, Xu, Ziyang, Liang, Qingfei, Li, Haofei, Peng, Liuqi, Wu, Mingming, Zhao, Xiaoli, Cui, Xu, Ruan, Changshun, Liu, Wenguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685475/
https://www.ncbi.nlm.nih.gov/pubmed/31406678
http://dx.doi.org/10.1002/advs.201900867
_version_ 1783442408860549120
author Gao, Fei
Xu, Ziyang
Liang, Qingfei
Li, Haofei
Peng, Liuqi
Wu, Mingming
Zhao, Xiaoli
Cui, Xu
Ruan, Changshun
Liu, Wenguang
author_facet Gao, Fei
Xu, Ziyang
Liang, Qingfei
Li, Haofei
Peng, Liuqi
Wu, Mingming
Zhao, Xiaoli
Cui, Xu
Ruan, Changshun
Liu, Wenguang
author_sort Gao, Fei
collection PubMed
description Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load‐bearing as bioscaffolds. Herein, a biodegradable high‐strength supramolecular polymer strengthened hydrogel composed of cleavable poly(N‐acryloyl 2‐glycine) (PACG) and methacrylated gelatin (GelMA) (PACG‐GelMA) is successfully constructed by photo‐initiated polymerization. Introducing hydrogen bond‐strengthened PACG contributes to a significant increase in the mechanical strengths of gelatin hydrogel with a high tensile strength (up to 1.1 MPa), outstanding compressive strength (up to 12.4 MPa), large Young's modulus (up to 320 kPa), and high compression modulus (up to 837 kPa). In turn, the GelMA chemical crosslinking could stabilize the temporary PACG network, showing tunable biodegradability by adjusting ACG/GelMA ratios. Further, a biohybrid gradient scaffold consisting of top layer of PACG‐GelMA hydrogel‐Mn(2+) and bottom layer of PACG‐GelMA hydrogel‐bioactive glass is fabricated for repair of osteochondral defects by a 3D printing technique. In vitro biological experiments demonstrate that the biohybrid gradient hydrogel scaffold not only supports cell attachment and spreading but also enhances gene expression of chondrogenic‐related and osteogenic‐related differentiation of human bone marrow stem cells. Around 12 weeks after in vivo implantation, the biohybrid gradient hydrogel scaffold significantly facilitates concurrent regeneration of cartilage and subchondral bone in a rat model.
format Online
Article
Text
id pubmed-6685475
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-66854752019-08-12 Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds Gao, Fei Xu, Ziyang Liang, Qingfei Li, Haofei Peng, Liuqi Wu, Mingming Zhao, Xiaoli Cui, Xu Ruan, Changshun Liu, Wenguang Adv Sci (Weinh) Full Papers Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load‐bearing as bioscaffolds. Herein, a biodegradable high‐strength supramolecular polymer strengthened hydrogel composed of cleavable poly(N‐acryloyl 2‐glycine) (PACG) and methacrylated gelatin (GelMA) (PACG‐GelMA) is successfully constructed by photo‐initiated polymerization. Introducing hydrogen bond‐strengthened PACG contributes to a significant increase in the mechanical strengths of gelatin hydrogel with a high tensile strength (up to 1.1 MPa), outstanding compressive strength (up to 12.4 MPa), large Young's modulus (up to 320 kPa), and high compression modulus (up to 837 kPa). In turn, the GelMA chemical crosslinking could stabilize the temporary PACG network, showing tunable biodegradability by adjusting ACG/GelMA ratios. Further, a biohybrid gradient scaffold consisting of top layer of PACG‐GelMA hydrogel‐Mn(2+) and bottom layer of PACG‐GelMA hydrogel‐bioactive glass is fabricated for repair of osteochondral defects by a 3D printing technique. In vitro biological experiments demonstrate that the biohybrid gradient hydrogel scaffold not only supports cell attachment and spreading but also enhances gene expression of chondrogenic‐related and osteogenic‐related differentiation of human bone marrow stem cells. Around 12 weeks after in vivo implantation, the biohybrid gradient hydrogel scaffold significantly facilitates concurrent regeneration of cartilage and subchondral bone in a rat model. John Wiley and Sons Inc. 2019-06-11 /pmc/articles/PMC6685475/ /pubmed/31406678 http://dx.doi.org/10.1002/advs.201900867 Text en © 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Gao, Fei
Xu, Ziyang
Liang, Qingfei
Li, Haofei
Peng, Liuqi
Wu, Mingming
Zhao, Xiaoli
Cui, Xu
Ruan, Changshun
Liu, Wenguang
Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds
title Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds
title_full Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds
title_fullStr Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds
title_full_unstemmed Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds
title_short Osteochondral Regeneration with 3D‐Printed Biodegradable High‐Strength Supramolecular Polymer Reinforced‐Gelatin Hydrogel Scaffolds
title_sort osteochondral regeneration with 3d‐printed biodegradable high‐strength supramolecular polymer reinforced‐gelatin hydrogel scaffolds
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685475/
https://www.ncbi.nlm.nih.gov/pubmed/31406678
http://dx.doi.org/10.1002/advs.201900867
work_keys_str_mv AT gaofei osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds
AT xuziyang osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds
AT liangqingfei osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds
AT lihaofei osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds
AT pengliuqi osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds
AT wumingming osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds
AT zhaoxiaoli osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds
AT cuixu osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds
AT ruanchangshun osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds
AT liuwenguang osteochondralregenerationwith3dprintedbiodegradablehighstrengthsupramolecularpolymerreinforcedgelatinhydrogelscaffolds