Cargando…
KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data
This article contains data related to the research article entitle “Multi-modal Deep Learning for Fruit Detection Using RGB-D Cameras and their Radiometric Capabilities” [1]. The development of reliable fruit detection and localization systems is essential for future sustainable agronomic management...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685673/ https://www.ncbi.nlm.nih.gov/pubmed/31406905 http://dx.doi.org/10.1016/j.dib.2019.104289 |
_version_ | 1783442440771862528 |
---|---|
author | Gené-Mola, Jordi Vilaplana, Verónica Rosell-Polo, Joan R. Morros, Josep-Ramon Ruiz-Hidalgo, Javier Gregorio, Eduard |
author_facet | Gené-Mola, Jordi Vilaplana, Verónica Rosell-Polo, Joan R. Morros, Josep-Ramon Ruiz-Hidalgo, Javier Gregorio, Eduard |
author_sort | Gené-Mola, Jordi |
collection | PubMed |
description | This article contains data related to the research article entitle “Multi-modal Deep Learning for Fruit Detection Using RGB-D Cameras and their Radiometric Capabilities” [1]. The development of reliable fruit detection and localization systems is essential for future sustainable agronomic management of high-value crops. RGB-D sensors have shown potential for fruit detection and localization since they provide 3D information with color data. However, the lack of substantial datasets is a barrier for exploiting the use of these sensors. This article presents the KFuji RGB-DS database which is composed by 967 multi-modal images of Fuji apples on trees captured using Microsoft Kinect v2 (Microsoft, Redmond, WA, USA). Each image contains information from 3 different modalities: color (RGB), depth (D) and range corrected IR intensity (S). Ground truth fruit locations were manually annotated, labeling a total of 12,839 apples in all the dataset. The current dataset is publicly available at http://www.grap.udl.cat/publicacions/datasets.html. |
format | Online Article Text |
id | pubmed-6685673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-66856732019-08-12 KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data Gené-Mola, Jordi Vilaplana, Verónica Rosell-Polo, Joan R. Morros, Josep-Ramon Ruiz-Hidalgo, Javier Gregorio, Eduard Data Brief Agricultural and Biological Science This article contains data related to the research article entitle “Multi-modal Deep Learning for Fruit Detection Using RGB-D Cameras and their Radiometric Capabilities” [1]. The development of reliable fruit detection and localization systems is essential for future sustainable agronomic management of high-value crops. RGB-D sensors have shown potential for fruit detection and localization since they provide 3D information with color data. However, the lack of substantial datasets is a barrier for exploiting the use of these sensors. This article presents the KFuji RGB-DS database which is composed by 967 multi-modal images of Fuji apples on trees captured using Microsoft Kinect v2 (Microsoft, Redmond, WA, USA). Each image contains information from 3 different modalities: color (RGB), depth (D) and range corrected IR intensity (S). Ground truth fruit locations were manually annotated, labeling a total of 12,839 apples in all the dataset. The current dataset is publicly available at http://www.grap.udl.cat/publicacions/datasets.html. Elsevier 2019-07-19 /pmc/articles/PMC6685673/ /pubmed/31406905 http://dx.doi.org/10.1016/j.dib.2019.104289 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Agricultural and Biological Science Gené-Mola, Jordi Vilaplana, Verónica Rosell-Polo, Joan R. Morros, Josep-Ramon Ruiz-Hidalgo, Javier Gregorio, Eduard KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data |
title | KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data |
title_full | KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data |
title_fullStr | KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data |
title_full_unstemmed | KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data |
title_short | KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data |
title_sort | kfuji rgb-ds database: fuji apple multi-modal images for fruit detection with color, depth and range-corrected ir data |
topic | Agricultural and Biological Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685673/ https://www.ncbi.nlm.nih.gov/pubmed/31406905 http://dx.doi.org/10.1016/j.dib.2019.104289 |
work_keys_str_mv | AT genemolajordi kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata AT vilaplanaveronica kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata AT rosellpolojoanr kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata AT morrosjosepramon kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata AT ruizhidalgojavier kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata AT gregorioeduard kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata |