Cargando…

KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data

This article contains data related to the research article entitle “Multi-modal Deep Learning for Fruit Detection Using RGB-D Cameras and their Radiometric Capabilities” [1]. The development of reliable fruit detection and localization systems is essential for future sustainable agronomic management...

Descripción completa

Detalles Bibliográficos
Autores principales: Gené-Mola, Jordi, Vilaplana, Verónica, Rosell-Polo, Joan R., Morros, Josep-Ramon, Ruiz-Hidalgo, Javier, Gregorio, Eduard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685673/
https://www.ncbi.nlm.nih.gov/pubmed/31406905
http://dx.doi.org/10.1016/j.dib.2019.104289
_version_ 1783442440771862528
author Gené-Mola, Jordi
Vilaplana, Verónica
Rosell-Polo, Joan R.
Morros, Josep-Ramon
Ruiz-Hidalgo, Javier
Gregorio, Eduard
author_facet Gené-Mola, Jordi
Vilaplana, Verónica
Rosell-Polo, Joan R.
Morros, Josep-Ramon
Ruiz-Hidalgo, Javier
Gregorio, Eduard
author_sort Gené-Mola, Jordi
collection PubMed
description This article contains data related to the research article entitle “Multi-modal Deep Learning for Fruit Detection Using RGB-D Cameras and their Radiometric Capabilities” [1]. The development of reliable fruit detection and localization systems is essential for future sustainable agronomic management of high-value crops. RGB-D sensors have shown potential for fruit detection and localization since they provide 3D information with color data. However, the lack of substantial datasets is a barrier for exploiting the use of these sensors. This article presents the KFuji RGB-DS database which is composed by 967 multi-modal images of Fuji apples on trees captured using Microsoft Kinect v2 (Microsoft, Redmond, WA, USA). Each image contains information from 3 different modalities: color (RGB), depth (D) and range corrected IR intensity (S). Ground truth fruit locations were manually annotated, labeling a total of 12,839 apples in all the dataset. The current dataset is publicly available at http://www.grap.udl.cat/publicacions/datasets.html.
format Online
Article
Text
id pubmed-6685673
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-66856732019-08-12 KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data Gené-Mola, Jordi Vilaplana, Verónica Rosell-Polo, Joan R. Morros, Josep-Ramon Ruiz-Hidalgo, Javier Gregorio, Eduard Data Brief Agricultural and Biological Science This article contains data related to the research article entitle “Multi-modal Deep Learning for Fruit Detection Using RGB-D Cameras and their Radiometric Capabilities” [1]. The development of reliable fruit detection and localization systems is essential for future sustainable agronomic management of high-value crops. RGB-D sensors have shown potential for fruit detection and localization since they provide 3D information with color data. However, the lack of substantial datasets is a barrier for exploiting the use of these sensors. This article presents the KFuji RGB-DS database which is composed by 967 multi-modal images of Fuji apples on trees captured using Microsoft Kinect v2 (Microsoft, Redmond, WA, USA). Each image contains information from 3 different modalities: color (RGB), depth (D) and range corrected IR intensity (S). Ground truth fruit locations were manually annotated, labeling a total of 12,839 apples in all the dataset. The current dataset is publicly available at http://www.grap.udl.cat/publicacions/datasets.html. Elsevier 2019-07-19 /pmc/articles/PMC6685673/ /pubmed/31406905 http://dx.doi.org/10.1016/j.dib.2019.104289 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Agricultural and Biological Science
Gené-Mola, Jordi
Vilaplana, Verónica
Rosell-Polo, Joan R.
Morros, Josep-Ramon
Ruiz-Hidalgo, Javier
Gregorio, Eduard
KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data
title KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data
title_full KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data
title_fullStr KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data
title_full_unstemmed KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data
title_short KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data
title_sort kfuji rgb-ds database: fuji apple multi-modal images for fruit detection with color, depth and range-corrected ir data
topic Agricultural and Biological Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685673/
https://www.ncbi.nlm.nih.gov/pubmed/31406905
http://dx.doi.org/10.1016/j.dib.2019.104289
work_keys_str_mv AT genemolajordi kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata
AT vilaplanaveronica kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata
AT rosellpolojoanr kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata
AT morrosjosepramon kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata
AT ruizhidalgojavier kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata
AT gregorioeduard kfujirgbdsdatabasefujiapplemultimodalimagesforfruitdetectionwithcolordepthandrangecorrectedirdata