Cargando…
Physico-chemical and key metal data for surface waters and sediments of the Sydney and Hawkesbury estuaries, Australia
This article contains general physico-chemical data (salinity, pH, redox potential, temperature, dissolved oxygen, suspended particulate matter (SPM), dissolved organic carbon and chlorophyll a concentrations) for surface waters at 15 near-pristine sites in the Hawkesbury Estuary and 24 sites (encom...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685680/ https://www.ncbi.nlm.nih.gov/pubmed/31406901 http://dx.doi.org/10.1016/j.dib.2019.104255 |
Sumario: | This article contains general physico-chemical data (salinity, pH, redox potential, temperature, dissolved oxygen, suspended particulate matter (SPM), dissolved organic carbon and chlorophyll a concentrations) for surface waters at 15 near-pristine sites in the Hawkesbury Estuary and 24 sites (encompassing a wide range of metal contamination) in the highly urbanized Sydney Estuary, south-eastern Australia. Data on concentrations of five key metals (cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and zinc (Zn)) in filtered (<0.2 μm) surface water, suspended particulate matter (>0.2 μm) and surface sediments (<2 mm) at each study site are also provided. The concentrations of Cd, Cr, Cu, Pb and Zn in SPM and sediment at each site were normalised for aluminium (Al) concentration (e.g. Cd/Al), to account for natural variation in particle size and mineralogy. Enrichment factors (EFs) were calculated from these data by dividing the mean metal concentration at each site in the Sydney Estuary, for each environmental matrix (i.e., filtered water, SPM and sediment), by its mean baseline metal concentration from near-pristine reference sites in the adjacent Hawkesbury Estuary. A thorough knowledge of the general physico-chemistry and key metal concentrations in surface waters and sediments in the Sydney Estuary provide a baseline to assess anthropogenic change and better manage estuarine/marine ecosystems. |
---|