Cargando…

Solving a new R2lox protein structure by microcrystal electron diffraction

Microcrystal electron diffraction (MicroED) has recently shown potential for structural biology. It enables the study of biomolecules from micrometer-sized 3D crystals that are too small to be studied by conventional x-ray crystallography. However, to date, MicroED has only been applied to redetermi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Hongyi, Lebrette, Hugo, Clabbers, Max T. B., Zhao, Jingjing, Griese, Julia J., Zou, Xiaodong, Högbom, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685719/
https://www.ncbi.nlm.nih.gov/pubmed/31457106
http://dx.doi.org/10.1126/sciadv.aax4621
Descripción
Sumario:Microcrystal electron diffraction (MicroED) has recently shown potential for structural biology. It enables the study of biomolecules from micrometer-sized 3D crystals that are too small to be studied by conventional x-ray crystallography. However, to date, MicroED has only been applied to redetermine protein structures that had already been solved previously by x-ray diffraction. Here, we present the first new protein structure—an R2lox enzyme—solved using MicroED. The structure was phased by molecular replacement using a search model of 35% sequence identity. The resulting electrostatic scattering potential map at 3.0-Å resolution was of sufficient quality to allow accurate model building and refinement. The dinuclear metal cofactor could be located in the map and was modeled as a heterodinuclear Mn/Fe center based on previous studies. Our results demonstrate that MicroED has the potential to become a widely applicable tool for revealing novel insights into protein structure and function.