Cargando…

Up-regulation of heat shock protein 27 inhibits apoptosis in lumbosacral nerve root avulsion-induced neurons

Lumbosacral nerve root avulsion leads to widespread death of neurons in the anterior horn area of the injured spinal cord, which results in dysfunction in the lower extremities. Heat shock protein 27 (Hsp27) has been found to play cytoprotective roles under adverse conditions. However, the role of H...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Zhi-bin, Huang, Gao-xiang, Lu, Jia-jia, Ma, Jun, Yuan, Qi-jun, Cao, Yan, Zhu, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685944/
https://www.ncbi.nlm.nih.gov/pubmed/31391542
http://dx.doi.org/10.1038/s41598-019-48003-9
Descripción
Sumario:Lumbosacral nerve root avulsion leads to widespread death of neurons in the anterior horn area of the injured spinal cord, which results in dysfunction in the lower extremities. Heat shock protein 27 (Hsp27) has been found to play cytoprotective roles under adverse conditions. However, the role of Hsp27 in neurons after lumbosacral nerve root avulsion is unknown. The aim of the present study was to investigate the effects and mechanism of action of Hsp27 on neurons after lumbosacral nerve root avulsion. It was found that Hsp27 expression was elevated in the anterior horn area of the injured spinal cord and the up-regulation of Hsp27 protected neurons against apoptosis after lumbosacral nerve root avulsion. In addition, Hsp27 plays an anti-apoptotic role by suppressing oxidative stress reactions. These findings indicated that Hsp27 may play a key role in resistance to lumbosacral nerve root avulsion-induced neuron apoptosis and may prove to be a potential strategy for improving prognosis after lumbosacral nerve root avulsion.