Cargando…
Machine learning applications in prostate cancer magnetic resonance imaging
With this review, we aimed to provide a synopsis of recently proposed applications of machine learning (ML) in radiology focusing on prostate magnetic resonance imaging (MRI). After defining the difference between ML and classical rule-based algorithms and the distinction among supervised, unsupervi...
Autores principales: | Cuocolo, Renato, Cipullo, Maria Brunella, Stanzione, Arnaldo, Ugga, Lorenzo, Romeo, Valeria, Radice, Leonardo, Brunetti, Arturo, Imbriaco, Massimo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686027/ https://www.ncbi.nlm.nih.gov/pubmed/31392526 http://dx.doi.org/10.1186/s41747-019-0109-2 |
Ejemplares similares
-
Beyond diagnosis: is there a role for radiomics in prostate cancer management?
por: Stanzione, Arnaldo, et al.
Publicado: (2023) -
Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis
por: Ugga, Lorenzo, et al.
Publicado: (2021) -
Differential diagnosis of benign and malignant vertebral compression fractures using conventional and advanced MRI techniques
por: Romeo, Valeria, et al.
Publicado: (2019) -
A critical appraisal of the quality of head and neck cancer imaging guidelines using the AGREE II tool: A EuroAIM initiative
por: Romeo, Valeria, et al.
Publicado: (2018) -
Oncologic Imaging and Radiomics: A Walkthrough Review of Methodological Challenges
por: Stanzione, Arnaldo, et al.
Publicado: (2022)