Cargando…
Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability
This study aims at improving upon existing activity predictions methods by augmenting chemical structure fingerprints with bio-activity based fingerprints derived from high-throughput screening (HTS) data (HTSFPs) and thereby showcasing the benefits of combining different descriptor types. This type...
Autores principales: | Laufkötter, Oliver, Sturm, Noé, Bajorath, Jürgen, Chen, Hongming, Engkvist, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686534/ https://www.ncbi.nlm.nih.gov/pubmed/31396716 http://dx.doi.org/10.1186/s13321-019-0376-1 |
Ejemplares similares
-
QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping
por: Škuta, C., et al.
Publicado: (2020) -
Identification of Compounds That Interfere with High‐Throughput Screening Assay Technologies
por: David, Laurianne, et al.
Publicado: (2019) -
Memory-assisted reinforcement learning for diverse molecular de novo design
por: Blaschke, Thomas, et al.
Publicado: (2020) -
Assessing Scaffold Diversity of Kinase Inhibitors Using Alternative Scaffold Concepts and Estimating the Scaffold Hopping Potential for Different Kinases
por: Dimova, Dilyana, et al.
Publicado: (2017) -
Application of Generative Autoencoder in De Novo Molecular Design
por: Blaschke, Thomas, et al.
Publicado: (2017)