Cargando…
Unsupervised Learning Reveals Geography of Global Ocean Dynamical Regions
Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the sta...
Autores principales: | Sonnewald, Maike, Wunsch, Carl, Heimbach, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686691/ https://www.ncbi.nlm.nih.gov/pubmed/31423460 http://dx.doi.org/10.1029/2018EA000519 |
Ejemplares similares
-
Elucidating ecological complexity: Unsupervised learning determines global marine eco-provinces
por: Sonnewald, Maike, et al.
Publicado: (2020) -
Global reconstruction of historical ocean heat storage and transport
por: Zanna, Laure, et al.
Publicado: (2019) -
The global geography of human subsistence
por: Gavin, Michael C., et al.
Publicado: (2018) -
World regional geography
por: Heintzelman, Oliver H. (Oliver Harry), 1909-1986
Publicado: (1967) -
New Geographies of Global Health
por: Esmaili, B. Emily
Publicado: (2018)