Cargando…
Graph limits of random graphs from a subset of connected k‐trees
For any set Ω of non‐negative integers such that [Formula: see text] , we consider a random Ω‐k‐tree G (n,k) that is uniformly selected from all connected k‐trees of (n + k) vertices such that the number of (k + 1)‐cliques that contain any fixed k‐clique belongs to Ω. We prove that G(n,k), scaled by...
Autores principales: | Drmota, Michael, Jin, Emma Yu, Stufler, Benedikt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686707/ https://www.ncbi.nlm.nih.gov/pubmed/31423073 http://dx.doi.org/10.1002/rsa.20802 |
Ejemplares similares
-
Connectivity Keeping Trees in 2-Connected Graphs with Girth Conditions
por: Hasunuma, Toru
Publicado: (2020) -
Random Trees
por: Drmota, Michael
Publicado: (2009) -
Connectivity in graphs
por: Tutte, WT
Publicado: (1966) -
On the Number of Spanning Trees of Graphs
por: Bozkurt, Ş. Burcu, et al.
Publicado: (2014) -
A unified approach to structural limits and limits of graphs with bounded tree-depth
por: Nesetřil, Jaroslav, et al.
Publicado: (1920)