Cargando…
Sex differences in the response to angiotensin II receptor blockade in a rat model of eccentric cardiac hypertrophy
Background. Men and women differ in their susceptibility to cardiovascular disease, though the underlying mechanism has remained elusive. Heart disease symptoms, evolution and response to treatment are often sex-specific. This has been studied in animal models of hypertension or myocardial infarctio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686841/ https://www.ncbi.nlm.nih.gov/pubmed/31404429 http://dx.doi.org/10.7717/peerj.7461 |
Sumario: | Background. Men and women differ in their susceptibility to cardiovascular disease, though the underlying mechanism has remained elusive. Heart disease symptoms, evolution and response to treatment are often sex-specific. This has been studied in animal models of hypertension or myocardial infarction in the past but has received less attention in the context of heart valve regurgitation. The aim of the study was to evaluate the development of cardiac hypertrophy (CH) in response to left ventricle (LV) volume overload (VO) caused by chronic aortic valve regurgitation (AR) in male and female rats treated or not with angiotensin II receptor blocker (ARB), valsartan. We studied eight groups of Wistar rats: male or female, AR or sham-operated (sham) and treated or not with valsartan (30 mg/kg/day) for 9 weeks starting one week before AR surgical induction. Results. As expected, VO from AR resulted for both male and female rats in significant LV dilation (39% vs. 40% end-diastolic LV diameter increase, respectively; p < 0.0001) and CH (53% vs. 64% heart weight increase, respectively; p < 0.0001) compared to sham. Sex differences were observed in LV wall thickening in response to VO. In untreated AR males, relative LV wall thickness (a ratio of wall thickness to end-diastolic diameter) was reduced compared to sham, whereas this ratio in females remained unchanged. ARB treatment did not prevent LV dilation in both male and female animals but reversed LV wall thickening in females. Systolic and diastolic functions in AR animals were altered similarly for both sexes. ARB treatment did not improve systolic function but helped normalizing diastolic parameters such as left atrial mass and E wave slope in female AR rats. Increased LV gene expression of Anp and Bnp was normalized by ARB treatment in AR females but not in males. Other hypertrophy gene markers (Fos, Trpc6, Klf15, Myh6 and Myh7) were not modulated by ARB treatment. The same was true for genes related to LV extracellular matrix remodeling (Col1a1, Col3a1, Fn1, Mmp2, Timp1 and Lox). In summary, ARB treatment of rats with severe AR blocked the female-specific hypertrophic response characterized by LV chamber wall thickening. LV dilation, on the other hand, was not significantly decreased by ARB treatment. This also indicates that activation of the angiotensin II receptor is probably more involved in the early steps of LV remodeling caused by AR in females than in males. |
---|