Cargando…

TNF-α Differentially Regulates Cell Cycle Genes in Promyelocytic and Granulocytic HL-60/S4 Cells

Tumor necrosis factor alpha (TNF-α) is a potent cytokine involved in systemic inflammation and immune modulation. Signaling responses that involve TNF-α are context dependent and capable of stimulating pathways promoting both cell death and survival. TNF-α treatment has been investigated as part of...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacobson, Elsie C., Jain, Lekha, Vickers, Mark H., Olins, Ada L., Olins, Donald E., Perry, Jo K., O’Sullivan, Justin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686940/
https://www.ncbi.nlm.nih.gov/pubmed/31263060
http://dx.doi.org/10.1534/g3.119.400361
Descripción
Sumario:Tumor necrosis factor alpha (TNF-α) is a potent cytokine involved in systemic inflammation and immune modulation. Signaling responses that involve TNF-α are context dependent and capable of stimulating pathways promoting both cell death and survival. TNF-α treatment has been investigated as part of a combined therapy for acute myeloid leukemia due to its modifying effects on all-trans retinoic acid (ATRA) mediated differentiation into granulocytes. To investigate the interaction between cellular differentiation and TNF-α, we performed RNA-sequencing on two forms of the human HL-60/S4 promyelocytic leukemia cell line treated with TNF-α. The ATRA-differentiated granulocytic form of HL-60/S4 cells had an enhanced transcriptional response to TNF-α treatment compared to the undifferentiated promyelocytes. The observed TNF-α responses included differential expression of cell cycle gene sets, which were generally upregulated in TNF-α treated promyelocytes, and downregulated in TNF-α treated granulocytes. This is consistent with TNF-α induced cell cycle repression in granulocytes and cell cycle progression in promyelocytes. Moreover, we found evidence that TNF-α treatment of granulocytes shifts the transcriptome toward that of a macrophage. We conclude that TNF-α treatment promotes a divergent transcriptional program in promyelocytes and granulocytes. TNF-α promotes cell cycle associated gene expression in promyelocytes. In contrast, TNF-α stimulated granulocytes have reduced cell cycle gene expression, and a macrophage-like transcriptional program.