Cargando…

Personalized prediction of adverse heart and kidney events using baseline and longitudinal data from SPRINT and ACCORD

BACKGROUND: The 2017 guidelines of the American College of Cardiology and the American Heart Association propose substantial changes to hypertension management. The guidelines lower the blood pressure threshold defining hypertension and promote more aggressive treatments. Thus, more individuals are...

Descripción completa

Detalles Bibliográficos
Autores principales: Dinstag, Gal, Amar, David, Ingelsson, Erik, Ashley, Euan, Shamir, Ron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687091/
https://www.ncbi.nlm.nih.gov/pubmed/31393900
http://dx.doi.org/10.1371/journal.pone.0219728
Descripción
Sumario:BACKGROUND: The 2017 guidelines of the American College of Cardiology and the American Heart Association propose substantial changes to hypertension management. The guidelines lower the blood pressure threshold defining hypertension and promote more aggressive treatments. Thus, more individuals are now classified as hypertensive and as a result, medication usage may become more extensive. An inevitable byproduct of greater medication use is higher incidence of adverse effects. Here, we examined these issues by developing models that predict both cardiovascular events and other adverse events based on the treatment chosen and other patient’s data. METHODS AND RESULTS: We used data from the SPRINT trial to produce patient-specific predictions of the risks for adverse cardiovascular or kidney outcomes. Unlike prior models, we used both the baseline characteristics collected upon recruitment and the longitudinal data during the follow-up. Importantly, our cardiovascular predictor outperformed extant models on SPRINT participants, achieving AUC = 0.765, and was validated with good performance in an independent cohort of the ACCORD trial. CONCLUSIONS: Our study illustrates the importance of including longitudinal data for assessing personalized risk and provides means for recommending personalized treatment decisions.