Cargando…

Evaluating the effects of control interventions and estimating the inapparent infections for dengue outbreak in Hangzhou, China

BACKGROUND: The number of dengue fever (DF) cases and the number of dengue outbreaks have increased in recent years in Zhejiang Province, China. An unexpected dengue outbreak was reported in Hangzhou in 2017 and caused more than one thousand dengue cases. This study was undertaken to evaluate the ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Haocheng, Wu, Chen, Lu, Qinbao, Ding, Zheyuan, Xue, Ming, Lin, Junfen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687121/
https://www.ncbi.nlm.nih.gov/pubmed/31393899
http://dx.doi.org/10.1371/journal.pone.0220391
Descripción
Sumario:BACKGROUND: The number of dengue fever (DF) cases and the number of dengue outbreaks have increased in recent years in Zhejiang Province, China. An unexpected dengue outbreak was reported in Hangzhou in 2017 and caused more than one thousand dengue cases. This study was undertaken to evaluate the effectiveness of the actual control measures, estimate the proportion of inapparent infections during this outbreak and simulate epidemic development based on different levels of control measures taking inapparent infections into consideration. METHODS: The epidemic data of dengue cases in Hangzhou, Zhejiang Province, in 2017 and the number of the people exposed to the outbreaks were obtained from the China Information Network System of Disease Prevention and Control. The epidemic without intervention measures was used to estimate the unknown parameters. A susceptible-exposed-infectious/inapparent-recovered (SEIAR) model was used to estimate the effectiveness of the control interventions. The inapparent infections were also evaluated at the same time. RESULTS: In total, 1137 indigenous dengue cases were reported in Hangzhou in 2017. The number of indigenous dengue cases was estimated by the SEIAR model. This number was predicted to reach 6090 by the end of November 2, 2017, if no control measures were implemented. The total number of reported cases was reduced by 81.33% in contrast to the estimated incidence without intervention. The number of average daily inapparent cases was 10.18 times higher than the number of symptomatic cases. The earlier and more rigorously the vector control interventions were implemented, the more effective they were. The results showed that implementing vector control continuously for more than twenty days was more effective than every few days of implementation. Case isolation is not sufficient enough for epidemic control and only reduced the incidence by 38.10% in contrast to the estimated incidence without intervention, even if case isolation began seven days after the onset of the first case. CONCLUSIONS: The practical control interventions in the outbreaks that occurred in Hangzhou City were highly effective. The proportion of inapparent infections was large, and it played an important role in transmitting the disease during this epidemic. Early, continuous and high efficacy vector control interventions are necessary to limit the development of a dengue epidemic. Timely diagnosis and case reporting are important in the intervention at an early stage of the epidemic.