Cargando…

Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters

A hydrologic model, calibrated using only streamflow data, can produce acceptable streamflow simulation at the watershed outlet yet unrealistic representations of water balance across the landscape. Recent studies have demonstrated the potential of multi-objective calibration using remotely sensed e...

Descripción completa

Detalles Bibliográficos
Autores principales: Rajib, Adnan, Evenson, Grey R., Golden, Heather E., Lane, Charles R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687302/
https://www.ncbi.nlm.nih.gov/pubmed/31395990
http://dx.doi.org/10.1016/j.jhydrol.2018.10.024
_version_ 1783442709802909696
author Rajib, Adnan
Evenson, Grey R.
Golden, Heather E.
Lane, Charles R.
author_facet Rajib, Adnan
Evenson, Grey R.
Golden, Heather E.
Lane, Charles R.
author_sort Rajib, Adnan
collection PubMed
description A hydrologic model, calibrated using only streamflow data, can produce acceptable streamflow simulation at the watershed outlet yet unrealistic representations of water balance across the landscape. Recent studies have demonstrated the potential of multi-objective calibration using remotely sensed evapotranspiration (ET) and gaged streamflow data to spatially improve the water balance. However, methodological clarity on how to “best” integrate ET data and model parameters in multi-objective model calibration to improve simulations is lacking. To address these limitations, we assessed how a spatially explicit, distributed calibration approach that uses (1) remotely sensed ET data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and (2) frequently overlooked biophysical parameters can improve the overall predictability of two key components of the water balance: streamflow and ET at different locations throughout the watershed. We used the Soil and Water Assessment Tool (SWAT), previously modified to represent hydrologic transport and filling-spilling of landscape depressions, in a large watershed of the Prairie Pothole Region, United States. We employed a novel stepwise series of calibration experiments to isolate the effects (on streamflow and simulated ET) of integrating biophysical parameters and spatially explicit remotely sensed ET data into model calibration. Results suggest that the inclusion of biophysical parameters involving vegetation dynamics and energy utilization mechanisms tend to increase model accuracy. Furthermore, we found that using a lumped, versus a spatially explicit, approach for integrating ET into model calibration produces a sub-optimal model state with no potential improvement in model performance across large spatial scales. However, when we utilized the same MODIS ET datasets but calibrated each sub-basin in the spatially explicit approach, water yield prediction uncertainty decreased, including a distinct improvement in the temporal and spatial accuracy of simulated ET and streamflow. This further resulted in a more realistic simulation of vegetation growth when compared to MODIS Leaf-Area Index data. These findings afford critical insights into the efficient integration of remotely sensed “big data” into hydrologic modeling and associated watershed management decisions. Our approach can be generalized and potentially replicated using other hydrologic models and remotely sensed data resources – and in different geophysical settings of the globe.
format Online
Article
Text
id pubmed-6687302
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-66873022019-08-08 Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters Rajib, Adnan Evenson, Grey R. Golden, Heather E. Lane, Charles R. J Hydrol (Amst) Article A hydrologic model, calibrated using only streamflow data, can produce acceptable streamflow simulation at the watershed outlet yet unrealistic representations of water balance across the landscape. Recent studies have demonstrated the potential of multi-objective calibration using remotely sensed evapotranspiration (ET) and gaged streamflow data to spatially improve the water balance. However, methodological clarity on how to “best” integrate ET data and model parameters in multi-objective model calibration to improve simulations is lacking. To address these limitations, we assessed how a spatially explicit, distributed calibration approach that uses (1) remotely sensed ET data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and (2) frequently overlooked biophysical parameters can improve the overall predictability of two key components of the water balance: streamflow and ET at different locations throughout the watershed. We used the Soil and Water Assessment Tool (SWAT), previously modified to represent hydrologic transport and filling-spilling of landscape depressions, in a large watershed of the Prairie Pothole Region, United States. We employed a novel stepwise series of calibration experiments to isolate the effects (on streamflow and simulated ET) of integrating biophysical parameters and spatially explicit remotely sensed ET data into model calibration. Results suggest that the inclusion of biophysical parameters involving vegetation dynamics and energy utilization mechanisms tend to increase model accuracy. Furthermore, we found that using a lumped, versus a spatially explicit, approach for integrating ET into model calibration produces a sub-optimal model state with no potential improvement in model performance across large spatial scales. However, when we utilized the same MODIS ET datasets but calibrated each sub-basin in the spatially explicit approach, water yield prediction uncertainty decreased, including a distinct improvement in the temporal and spatial accuracy of simulated ET and streamflow. This further resulted in a more realistic simulation of vegetation growth when compared to MODIS Leaf-Area Index data. These findings afford critical insights into the efficient integration of remotely sensed “big data” into hydrologic modeling and associated watershed management decisions. Our approach can be generalized and potentially replicated using other hydrologic models and remotely sensed data resources – and in different geophysical settings of the globe. 2018-12-01 2018 /pmc/articles/PMC6687302/ /pubmed/31395990 http://dx.doi.org/10.1016/j.jhydrol.2018.10.024 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Rajib, Adnan
Evenson, Grey R.
Golden, Heather E.
Lane, Charles R.
Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters
title Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters
title_full Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters
title_fullStr Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters
title_full_unstemmed Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters
title_short Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters
title_sort hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687302/
https://www.ncbi.nlm.nih.gov/pubmed/31395990
http://dx.doi.org/10.1016/j.jhydrol.2018.10.024
work_keys_str_mv AT rajibadnan hydrologicmodelpredictabilityimproveswithspatiallyexplicitcalibrationusingremotelysensedevapotranspirationandbiophysicalparameters
AT evensongreyr hydrologicmodelpredictabilityimproveswithspatiallyexplicitcalibrationusingremotelysensedevapotranspirationandbiophysicalparameters
AT goldenheathere hydrologicmodelpredictabilityimproveswithspatiallyexplicitcalibrationusingremotelysensedevapotranspirationandbiophysicalparameters
AT lanecharlesr hydrologicmodelpredictabilityimproveswithspatiallyexplicitcalibrationusingremotelysensedevapotranspirationandbiophysicalparameters