Cargando…
Intraoperative Triggered Electromyography Recordings from the External Urethral Sphincter Muscles During Spine Surgeries
Introduction: Bowel and bladder function are at risk during tumor resection and other surgeries of the conus, cauda equina, and nerve roots. This study demonstrates the ability to acquire triggered electromyography (t-EMG) from the external urethral sphincter (EUS) muscles by utilizing a urethral ca...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687425/ https://www.ncbi.nlm.nih.gov/pubmed/31417812 http://dx.doi.org/10.7759/cureus.4867 |
_version_ | 1783442728844001280 |
---|---|
author | Jahangiri, Faisal R Asdi, Rabehah A Tarasiewicz, Izabela Azzubi, Moutasem |
author_facet | Jahangiri, Faisal R Asdi, Rabehah A Tarasiewicz, Izabela Azzubi, Moutasem |
author_sort | Jahangiri, Faisal R |
collection | PubMed |
description | Introduction: Bowel and bladder function are at risk during tumor resection and other surgeries of the conus, cauda equina, and nerve roots. This study demonstrates the ability to acquire triggered electromyography (t-EMG) from the external urethral sphincter (EUS) muscles by utilizing a urethral catheter with an electrode attached. Methods: A retrospective analysis of neurophysiological monitoring data from two medical centers was performed. Seven intradural tumors and three tethered cord release surgeries that used urethral sphincter electrodes to record t-EMG were included in the analysis. The patients consisted of five females and five males with ages ranging from eight months to 67 years (median: 49 years). Our neuromonitoring paradigm included upper and lower extremity somatosensory evoked potentials (SSEPs) and transcranial electrical motor evoked potentials (TCeMEPs), as well as spontaneous and triggered electromyography (EMG) from the external anal sphincter (EAS), EUS muscles and lower extremity muscles bilaterally. A catheter with urethral electrodes attached was used for recording spontaneous electromyography (s-EMG), t-EMG, and TCeMEPs from the skeletal muscle of the EUS. Train of four (TOF) was also recorded from the abductor hallucis muscle as well for monitoring the level of muscle relaxant. Results: We were able to successfully record t-EMG responses from the EUS muscles in all patients (100%). It is worthy to note that only one patient presented preoperatively with bladder incontinence, urgency, and frequency. Almost immediately in the postoperative phase, the patient’s frequency and urgency improved, and the bladder function normalized within two weeks of having the tumor removed. Conclusions: In this small series, we were able to acquire t-EMG in 100% of patients when recorded from the EUS using a urethral catheter with electrodes built into it. T-EMGs can be attempted in surgeries that put the function of the pelvic floor at risk. More study is needed to establish better statistical methods, better modality efficacy, and a better understanding of intraoperative countermeasures that may be employed when an alert is encountered to prevent impending neurological sequelae. |
format | Online Article Text |
id | pubmed-6687425 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Cureus |
record_format | MEDLINE/PubMed |
spelling | pubmed-66874252019-08-15 Intraoperative Triggered Electromyography Recordings from the External Urethral Sphincter Muscles During Spine Surgeries Jahangiri, Faisal R Asdi, Rabehah A Tarasiewicz, Izabela Azzubi, Moutasem Cureus Neurology Introduction: Bowel and bladder function are at risk during tumor resection and other surgeries of the conus, cauda equina, and nerve roots. This study demonstrates the ability to acquire triggered electromyography (t-EMG) from the external urethral sphincter (EUS) muscles by utilizing a urethral catheter with an electrode attached. Methods: A retrospective analysis of neurophysiological monitoring data from two medical centers was performed. Seven intradural tumors and three tethered cord release surgeries that used urethral sphincter electrodes to record t-EMG were included in the analysis. The patients consisted of five females and five males with ages ranging from eight months to 67 years (median: 49 years). Our neuromonitoring paradigm included upper and lower extremity somatosensory evoked potentials (SSEPs) and transcranial electrical motor evoked potentials (TCeMEPs), as well as spontaneous and triggered electromyography (EMG) from the external anal sphincter (EAS), EUS muscles and lower extremity muscles bilaterally. A catheter with urethral electrodes attached was used for recording spontaneous electromyography (s-EMG), t-EMG, and TCeMEPs from the skeletal muscle of the EUS. Train of four (TOF) was also recorded from the abductor hallucis muscle as well for monitoring the level of muscle relaxant. Results: We were able to successfully record t-EMG responses from the EUS muscles in all patients (100%). It is worthy to note that only one patient presented preoperatively with bladder incontinence, urgency, and frequency. Almost immediately in the postoperative phase, the patient’s frequency and urgency improved, and the bladder function normalized within two weeks of having the tumor removed. Conclusions: In this small series, we were able to acquire t-EMG in 100% of patients when recorded from the EUS using a urethral catheter with electrodes built into it. T-EMGs can be attempted in surgeries that put the function of the pelvic floor at risk. More study is needed to establish better statistical methods, better modality efficacy, and a better understanding of intraoperative countermeasures that may be employed when an alert is encountered to prevent impending neurological sequelae. Cureus 2019-06-10 /pmc/articles/PMC6687425/ /pubmed/31417812 http://dx.doi.org/10.7759/cureus.4867 Text en Copyright © 2019, Jahangiri et al. http://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Neurology Jahangiri, Faisal R Asdi, Rabehah A Tarasiewicz, Izabela Azzubi, Moutasem Intraoperative Triggered Electromyography Recordings from the External Urethral Sphincter Muscles During Spine Surgeries |
title | Intraoperative Triggered Electromyography Recordings from the External Urethral Sphincter Muscles During Spine Surgeries |
title_full | Intraoperative Triggered Electromyography Recordings from the External Urethral Sphincter Muscles During Spine Surgeries |
title_fullStr | Intraoperative Triggered Electromyography Recordings from the External Urethral Sphincter Muscles During Spine Surgeries |
title_full_unstemmed | Intraoperative Triggered Electromyography Recordings from the External Urethral Sphincter Muscles During Spine Surgeries |
title_short | Intraoperative Triggered Electromyography Recordings from the External Urethral Sphincter Muscles During Spine Surgeries |
title_sort | intraoperative triggered electromyography recordings from the external urethral sphincter muscles during spine surgeries |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687425/ https://www.ncbi.nlm.nih.gov/pubmed/31417812 http://dx.doi.org/10.7759/cureus.4867 |
work_keys_str_mv | AT jahangirifaisalr intraoperativetriggeredelectromyographyrecordingsfromtheexternalurethralsphinctermusclesduringspinesurgeries AT asdirabehaha intraoperativetriggeredelectromyographyrecordingsfromtheexternalurethralsphinctermusclesduringspinesurgeries AT tarasiewiczizabela intraoperativetriggeredelectromyographyrecordingsfromtheexternalurethralsphinctermusclesduringspinesurgeries AT azzubimoutasem intraoperativetriggeredelectromyographyrecordingsfromtheexternalurethralsphinctermusclesduringspinesurgeries |