Cargando…
Elucidation of Galactomannan Biosynthesis Pathway Genes through Transcriptome Sequencing of Seeds Collected at Different Developmental Stages of Commercially Important Indian Varieties of Cluster Bean (Cyamopsis tetragonoloba L.)
Cyamopsis tetragonoloba (L) endosperm predominantly contains guar gum a polysaccharide, which has tremendous industrial applications in food, textile, paper, oil drilling and water treatment. In order to understand the genes controlling galactomannan biosynthesis, mRNA was isolated from seeds collec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687724/ https://www.ncbi.nlm.nih.gov/pubmed/31395961 http://dx.doi.org/10.1038/s41598-019-48072-w |
_version_ | 1783442765360660480 |
---|---|
author | Chaudhury, Ashok Kaila, Tanvi Gaikwad, Kishor |
author_facet | Chaudhury, Ashok Kaila, Tanvi Gaikwad, Kishor |
author_sort | Chaudhury, Ashok |
collection | PubMed |
description | Cyamopsis tetragonoloba (L) endosperm predominantly contains guar gum a polysaccharide, which has tremendous industrial applications in food, textile, paper, oil drilling and water treatment. In order to understand the genes controlling galactomannan biosynthesis, mRNA was isolated from seeds collected at different developmental stages; young pods, mature pods and young leaf from two guar varieties, HG365 and HG870 and subjected to Illumina sequencing. De novo assembly of fourteen individual read files from two varieties of guar representing seven developmental stages gave a total of 1,13,607 contigs with an N50 of 1,244 bases. Annotation of assemblies with GO mapping revealed three levels of distribution, namely, Biological Processes, Molecular Functions and Cellular Components. GO studies identified major genes involved in galactomannan biosynthesis: Cellulose synthase D1 (CS D1) and GAUT-like gene families. Among the polysaccharide biosynthetic process (GO:0000271) genes the transcript abundance for CS was found to be predominantly more in leaf samples, whereas, the transcript abundance for GAUT-like steadily increased from 65% to 90% and above from stage1 to stage5 indicating accumulation of galactomannan in developing seeds; and validated by qRT-PCR analysis. Galactomannan quantification by HPLC showed HG365 (12.98–20.66%) and HG870 (7.035–41.2%) gradually increasing from stage1 to stage 5 (10–50 DAA) and highest accumulation occurred in mature and dry seeds with 3.8 to 7.1 fold increase, respectively. This is the first report of transcriptome sequencing and complete profiling of guar seeds at different developmental stages, young pods, mature pods and young leaf material from two commercially important Indian varieties and elucidation of galactomannan biosynthesis pathway. It is envisaged that the data presented herein will be very useful for improvement of guar through biotechnological interventions in future. |
format | Online Article Text |
id | pubmed-6687724 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-66877242019-08-13 Elucidation of Galactomannan Biosynthesis Pathway Genes through Transcriptome Sequencing of Seeds Collected at Different Developmental Stages of Commercially Important Indian Varieties of Cluster Bean (Cyamopsis tetragonoloba L.) Chaudhury, Ashok Kaila, Tanvi Gaikwad, Kishor Sci Rep Article Cyamopsis tetragonoloba (L) endosperm predominantly contains guar gum a polysaccharide, which has tremendous industrial applications in food, textile, paper, oil drilling and water treatment. In order to understand the genes controlling galactomannan biosynthesis, mRNA was isolated from seeds collected at different developmental stages; young pods, mature pods and young leaf from two guar varieties, HG365 and HG870 and subjected to Illumina sequencing. De novo assembly of fourteen individual read files from two varieties of guar representing seven developmental stages gave a total of 1,13,607 contigs with an N50 of 1,244 bases. Annotation of assemblies with GO mapping revealed three levels of distribution, namely, Biological Processes, Molecular Functions and Cellular Components. GO studies identified major genes involved in galactomannan biosynthesis: Cellulose synthase D1 (CS D1) and GAUT-like gene families. Among the polysaccharide biosynthetic process (GO:0000271) genes the transcript abundance for CS was found to be predominantly more in leaf samples, whereas, the transcript abundance for GAUT-like steadily increased from 65% to 90% and above from stage1 to stage5 indicating accumulation of galactomannan in developing seeds; and validated by qRT-PCR analysis. Galactomannan quantification by HPLC showed HG365 (12.98–20.66%) and HG870 (7.035–41.2%) gradually increasing from stage1 to stage 5 (10–50 DAA) and highest accumulation occurred in mature and dry seeds with 3.8 to 7.1 fold increase, respectively. This is the first report of transcriptome sequencing and complete profiling of guar seeds at different developmental stages, young pods, mature pods and young leaf material from two commercially important Indian varieties and elucidation of galactomannan biosynthesis pathway. It is envisaged that the data presented herein will be very useful for improvement of guar through biotechnological interventions in future. Nature Publishing Group UK 2019-08-08 /pmc/articles/PMC6687724/ /pubmed/31395961 http://dx.doi.org/10.1038/s41598-019-48072-w Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Chaudhury, Ashok Kaila, Tanvi Gaikwad, Kishor Elucidation of Galactomannan Biosynthesis Pathway Genes through Transcriptome Sequencing of Seeds Collected at Different Developmental Stages of Commercially Important Indian Varieties of Cluster Bean (Cyamopsis tetragonoloba L.) |
title | Elucidation of Galactomannan Biosynthesis Pathway Genes through Transcriptome Sequencing of Seeds Collected at Different Developmental Stages of Commercially Important Indian Varieties of Cluster Bean (Cyamopsis tetragonoloba L.) |
title_full | Elucidation of Galactomannan Biosynthesis Pathway Genes through Transcriptome Sequencing of Seeds Collected at Different Developmental Stages of Commercially Important Indian Varieties of Cluster Bean (Cyamopsis tetragonoloba L.) |
title_fullStr | Elucidation of Galactomannan Biosynthesis Pathway Genes through Transcriptome Sequencing of Seeds Collected at Different Developmental Stages of Commercially Important Indian Varieties of Cluster Bean (Cyamopsis tetragonoloba L.) |
title_full_unstemmed | Elucidation of Galactomannan Biosynthesis Pathway Genes through Transcriptome Sequencing of Seeds Collected at Different Developmental Stages of Commercially Important Indian Varieties of Cluster Bean (Cyamopsis tetragonoloba L.) |
title_short | Elucidation of Galactomannan Biosynthesis Pathway Genes through Transcriptome Sequencing of Seeds Collected at Different Developmental Stages of Commercially Important Indian Varieties of Cluster Bean (Cyamopsis tetragonoloba L.) |
title_sort | elucidation of galactomannan biosynthesis pathway genes through transcriptome sequencing of seeds collected at different developmental stages of commercially important indian varieties of cluster bean (cyamopsis tetragonoloba l.) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687724/ https://www.ncbi.nlm.nih.gov/pubmed/31395961 http://dx.doi.org/10.1038/s41598-019-48072-w |
work_keys_str_mv | AT chaudhuryashok elucidationofgalactomannanbiosynthesispathwaygenesthroughtranscriptomesequencingofseedscollectedatdifferentdevelopmentalstagesofcommerciallyimportantindianvarietiesofclusterbeancyamopsistetragonolobal AT kailatanvi elucidationofgalactomannanbiosynthesispathwaygenesthroughtranscriptomesequencingofseedscollectedatdifferentdevelopmentalstagesofcommerciallyimportantindianvarietiesofclusterbeancyamopsistetragonolobal AT gaikwadkishor elucidationofgalactomannanbiosynthesispathwaygenesthroughtranscriptomesequencingofseedscollectedatdifferentdevelopmentalstagesofcommerciallyimportantindianvarietiesofclusterbeancyamopsistetragonolobal |