Cargando…
Past–future information bottleneck for sampling molecular reaction coordinate simultaneously with thermodynamics and kinetics
The ability to rapidly learn from high-dimensional data to make reliable bets about the future is crucial in many contexts. This could be a fly avoiding predators, or the retina processing gigabytes of data to guide human actions. In this work we draw parallels between these and the efficient sampli...
Autores principales: | Wang, Yihang, Ribeiro, João Marcelo Lamim, Tiwary, Pratyush |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687748/ https://www.ncbi.nlm.nih.gov/pubmed/31395868 http://dx.doi.org/10.1038/s41467-019-11405-4 |
Ejemplares similares
-
From data to noise to data for mixing physics across temperatures with generative artificial intelligence
por: Wang, Yihang, et al.
Publicado: (2022) -
A combination of machine learning and infrequent metadynamics to efficiently predict kinetic rates, transition states, and molecular determinants of drug dissociation from G protein-coupled receptors
por: Lamim Ribeiro, João Marcelo, et al.
Publicado: (2020) -
Interrogating RNA–Small Molecule Interactions
with Structure Probing and Artificial Intelligence-Augmented Molecular
Simulations
por: Wang, Yihang, et al.
Publicado: (2022) -
Theoretical development of atomic structure: past, present and future
por: Tiwary, S N
Publicado: (1994) -
Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry
por: Vogel, Kristina, et al.
Publicado: (2020)