Cargando…
A Closed-Loop Toolchain for Neural Network Simulations of Learning Autonomous Agents
Neural network simulation is an important tool for generating and evaluating hypotheses on the structure, dynamics, and function of neural circuits. For scientific questions addressing organisms operating autonomously in their environments, in particular where learning is involved, it is crucial to...
Autores principales: | Jordan, Jakob, Weidel, Philipp, Morrison, Abigail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687756/ https://www.ncbi.nlm.nih.gov/pubmed/31427939 http://dx.doi.org/10.3389/fncom.2019.00046 |
Ejemplares similares
-
ROS-MUSIC toolchain for spiking neural network simulations in a robotic environment
por: Weidel, Philipp, et al.
Publicado: (2015) -
Closed Loop Interactions between Spiking Neural Network and Robotic Simulators Based on MUSIC and ROS
por: Weidel, Philipp, et al.
Publicado: (2016) -
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021) -
Reproducing Polychronization: A Guide to Maximizing the Reproducibility of Spiking Network Models
por: Pauli, Robin, et al.
Publicado: (2018) -
Modeling toolchain for realistic simulation of photoacoustic data acquisition
por: Muller, Jan-Willem, et al.
Publicado: (2022)